| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) | 
						
							| 2 | 1 | xrs1cmn |  |-  ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd | 
						
							| 3 | 1 | xrge0subm |  |-  ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) | 
						
							| 4 |  | xrex |  |-  RR* e. _V | 
						
							| 5 | 4 | difexi |  |-  ( RR* \ { -oo } ) e. _V | 
						
							| 6 |  | difss |  |-  ( RR* \ { -oo } ) C_ RR* | 
						
							| 7 |  | xrsbas |  |-  RR* = ( Base ` RR*s ) | 
						
							| 8 | 1 7 | ressbas2 |  |-  ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) ) | 
						
							| 9 | 6 8 | ax-mp |  |-  ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) | 
						
							| 10 | 9 | submss |  |-  ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) | 
						
							| 11 | 3 10 | ax-mp |  |-  ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) | 
						
							| 12 |  | ressabs |  |-  ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 13 | 5 11 12 | mp2an |  |-  ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 14 | 13 | eqcomi |  |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) | 
						
							| 15 | 14 | submmnd |  |-  ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) | 
						
							| 16 | 3 15 | ax-mp |  |-  ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd | 
						
							| 17 | 14 | subcmn |  |-  ( ( ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) | 
						
							| 18 | 2 16 17 | mp2an |  |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |