Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
2 |
1
|
xrs1cmn |
|- ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd |
3 |
1
|
xrge0subm |
|- ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
4 |
|
xrex |
|- RR* e. _V |
5 |
4
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
6 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
7 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
8 |
1 7
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) ) |
9 |
6 8
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
10 |
9
|
submss |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) |
11 |
3 10
|
ax-mp |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
12 |
|
ressabs |
|- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
13 |
5 11 12
|
mp2an |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
14 |
13
|
eqcomi |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
15 |
14
|
submmnd |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
16 |
3 15
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
17 |
14
|
subcmn |
|- ( ( ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
18 |
2 16 17
|
mp2an |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |