Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|- ( F : RR --> RR -> F Fn RR ) |
2 |
1
|
adantr |
|- ( ( F : RR --> RR /\ 0p oR <_ F ) -> F Fn RR ) |
3 |
|
ax-resscn |
|- RR C_ CC |
4 |
3
|
a1i |
|- ( F : RR --> RR -> RR C_ CC ) |
5 |
4 1
|
0pledm |
|- ( F : RR --> RR -> ( 0p oR <_ F <-> ( RR X. { 0 } ) oR <_ F ) ) |
6 |
|
0re |
|- 0 e. RR |
7 |
|
fnconstg |
|- ( 0 e. RR -> ( RR X. { 0 } ) Fn RR ) |
8 |
6 7
|
mp1i |
|- ( F : RR --> RR -> ( RR X. { 0 } ) Fn RR ) |
9 |
|
reex |
|- RR e. _V |
10 |
9
|
a1i |
|- ( F : RR --> RR -> RR e. _V ) |
11 |
|
inidm |
|- ( RR i^i RR ) = RR |
12 |
|
c0ex |
|- 0 e. _V |
13 |
12
|
fvconst2 |
|- ( x e. RR -> ( ( RR X. { 0 } ) ` x ) = 0 ) |
14 |
13
|
adantl |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( ( RR X. { 0 } ) ` x ) = 0 ) |
15 |
|
eqidd |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
16 |
8 1 10 10 11 14 15
|
ofrfval |
|- ( F : RR --> RR -> ( ( RR X. { 0 } ) oR <_ F <-> A. x e. RR 0 <_ ( F ` x ) ) ) |
17 |
|
ffvelrn |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR ) |
18 |
17
|
rexrd |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR* ) |
19 |
18
|
biantrurd |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) ) |
20 |
|
elxrge0 |
|- ( ( F ` x ) e. ( 0 [,] +oo ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) |
21 |
19 20
|
bitr4di |
|- ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,] +oo ) ) ) |
22 |
21
|
ralbidva |
|- ( F : RR --> RR -> ( A. x e. RR 0 <_ ( F ` x ) <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
23 |
5 16 22
|
3bitrd |
|- ( F : RR --> RR -> ( 0p oR <_ F <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
24 |
23
|
biimpa |
|- ( ( F : RR --> RR /\ 0p oR <_ F ) -> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) |
25 |
|
ffnfv |
|- ( F : RR --> ( 0 [,] +oo ) <-> ( F Fn RR /\ A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) |
26 |
2 24 25
|
sylanbrc |
|- ( ( F : RR --> RR /\ 0p oR <_ F ) -> F : RR --> ( 0 [,] +oo ) ) |