| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : RR --> RR -> F Fn RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( F : RR --> RR /\ 0p oR <_ F ) -> F Fn RR ) | 
						
							| 3 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 4 | 3 | a1i |  |-  ( F : RR --> RR -> RR C_ CC ) | 
						
							| 5 | 4 1 | 0pledm |  |-  ( F : RR --> RR -> ( 0p oR <_ F <-> ( RR X. { 0 } ) oR <_ F ) ) | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 |  | fnconstg |  |-  ( 0 e. RR -> ( RR X. { 0 } ) Fn RR ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( F : RR --> RR -> ( RR X. { 0 } ) Fn RR ) | 
						
							| 9 |  | reex |  |-  RR e. _V | 
						
							| 10 | 9 | a1i |  |-  ( F : RR --> RR -> RR e. _V ) | 
						
							| 11 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 | 12 | fvconst2 |  |-  ( x e. RR -> ( ( RR X. { 0 } ) ` x ) = 0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( ( RR X. { 0 } ) ` x ) = 0 ) | 
						
							| 15 |  | eqidd |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 16 | 8 1 10 10 11 14 15 | ofrfval |  |-  ( F : RR --> RR -> ( ( RR X. { 0 } ) oR <_ F <-> A. x e. RR 0 <_ ( F ` x ) ) ) | 
						
							| 17 |  | ffvelcdm |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR ) | 
						
							| 18 | 17 | rexrd |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR* ) | 
						
							| 19 | 18 | biantrurd |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) ) | 
						
							| 20 |  | elxrge0 |  |-  ( ( F ` x ) e. ( 0 [,] +oo ) <-> ( ( F ` x ) e. RR* /\ 0 <_ ( F ` x ) ) ) | 
						
							| 21 | 19 20 | bitr4di |  |-  ( ( F : RR --> RR /\ x e. RR ) -> ( 0 <_ ( F ` x ) <-> ( F ` x ) e. ( 0 [,] +oo ) ) ) | 
						
							| 22 | 21 | ralbidva |  |-  ( F : RR --> RR -> ( A. x e. RR 0 <_ ( F ` x ) <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) | 
						
							| 23 | 5 16 22 | 3bitrd |  |-  ( F : RR --> RR -> ( 0p oR <_ F <-> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( F : RR --> RR /\ 0p oR <_ F ) -> A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 25 |  | ffnfv |  |-  ( F : RR --> ( 0 [,] +oo ) <-> ( F Fn RR /\ A. x e. RR ( F ` x ) e. ( 0 [,] +oo ) ) ) | 
						
							| 26 | 2 24 25 | sylanbrc |  |-  ( ( F : RR --> RR /\ 0p oR <_ F ) -> F : RR --> ( 0 [,] +oo ) ) |