Description: A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xrge0ge0 | |- ( A e. ( 0 [,] +oo ) -> 0 <_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxrge0 | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
|
2 | 1 | biimpi | |- ( A e. ( 0 [,] +oo ) -> ( A e. RR* /\ 0 <_ A ) ) |
3 | 2 | simprd | |- ( A e. ( 0 [,] +oo ) -> 0 <_ A ) |