Metamath Proof Explorer


Theorem xrge0ge0

Description: A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion xrge0ge0
|- ( A e. ( 0 [,] +oo ) -> 0 <_ A )

Proof

Step Hyp Ref Expression
1 elxrge0
 |-  ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) )
2 1 biimpi
 |-  ( A e. ( 0 [,] +oo ) -> ( A e. RR* /\ 0 <_ A ) )
3 2 simprd
 |-  ( A e. ( 0 [,] +oo ) -> 0 <_ A )