| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0gsumle.g |  |-  G = ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 2 |  | xrge0gsumle.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | xrge0gsumle.f |  |-  ( ph -> F : A --> ( 0 [,] +oo ) ) | 
						
							| 4 |  | xrge0gsumle.b |  |-  ( ph -> B e. ( ~P A i^i Fin ) ) | 
						
							| 5 |  | xrge0gsumle.c |  |-  ( ph -> C C_ B ) | 
						
							| 6 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 7 |  | xrsbas |  |-  RR* = ( Base ` RR*s ) | 
						
							| 8 | 1 7 | ressbas2 |  |-  ( ( 0 [,] +oo ) C_ RR* -> ( 0 [,] +oo ) = ( Base ` G ) ) | 
						
							| 9 | 6 8 | ax-mp |  |-  ( 0 [,] +oo ) = ( Base ` G ) | 
						
							| 10 |  | eqid |  |-  ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) | 
						
							| 11 | 10 | xrge0subm |  |-  ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) | 
						
							| 12 |  | xrex |  |-  RR* e. _V | 
						
							| 13 | 12 | difexi |  |-  ( RR* \ { -oo } ) e. _V | 
						
							| 14 |  | simpl |  |-  ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* ) | 
						
							| 15 |  | ge0nemnf |  |-  ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo ) | 
						
							| 16 | 14 15 | jca |  |-  ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) ) | 
						
							| 17 |  | elxrge0 |  |-  ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) ) | 
						
							| 18 |  | eldifsn |  |-  ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) | 
						
							| 19 | 16 17 18 | 3imtr4i |  |-  ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) | 
						
							| 20 | 19 | ssriv |  |-  ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) | 
						
							| 21 |  | ressabs |  |-  ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) | 
						
							| 22 | 13 20 21 | mp2an |  |-  ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 23 | 1 22 | eqtr4i |  |-  G = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) | 
						
							| 24 | 10 | xrs10 |  |-  0 = ( 0g ` ( RR*s |`s ( RR* \ { -oo } ) ) ) | 
						
							| 25 | 23 24 | subm0 |  |-  ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> 0 = ( 0g ` G ) ) | 
						
							| 26 | 11 25 | ax-mp |  |-  0 = ( 0g ` G ) | 
						
							| 27 |  | xrge0cmn |  |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd | 
						
							| 28 | 1 27 | eqeltri |  |-  G e. CMnd | 
						
							| 29 | 28 | a1i |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> G e. CMnd ) | 
						
							| 30 |  | elfpw |  |-  ( s e. ( ~P A i^i Fin ) <-> ( s C_ A /\ s e. Fin ) ) | 
						
							| 31 | 30 | simprbi |  |-  ( s e. ( ~P A i^i Fin ) -> s e. Fin ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> s e. Fin ) | 
						
							| 33 | 30 | simplbi |  |-  ( s e. ( ~P A i^i Fin ) -> s C_ A ) | 
						
							| 34 |  | fssres |  |-  ( ( F : A --> ( 0 [,] +oo ) /\ s C_ A ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) | 
						
							| 35 | 3 33 34 | syl2an |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) | 
						
							| 36 |  | c0ex |  |-  0 e. _V | 
						
							| 37 | 36 | a1i |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> 0 e. _V ) | 
						
							| 38 | 35 32 37 | fdmfifsupp |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) finSupp 0 ) | 
						
							| 39 | 9 26 29 32 35 38 | gsumcl |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. ( 0 [,] +oo ) ) | 
						
							| 40 | 6 39 | sselid |  |-  ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. RR* ) | 
						
							| 41 | 40 | fmpttd |  |-  ( ph -> ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) : ( ~P A i^i Fin ) --> RR* ) | 
						
							| 42 | 41 | frnd |  |-  ( ph -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* ) | 
						
							| 43 |  | 0ss |  |-  (/) C_ A | 
						
							| 44 |  | 0fi |  |-  (/) e. Fin | 
						
							| 45 |  | elfpw |  |-  ( (/) e. ( ~P A i^i Fin ) <-> ( (/) C_ A /\ (/) e. Fin ) ) | 
						
							| 46 | 43 44 45 | mpbir2an |  |-  (/) e. ( ~P A i^i Fin ) | 
						
							| 47 |  | 0cn |  |-  0 e. CC | 
						
							| 48 |  | eqid |  |-  ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) = ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) | 
						
							| 49 |  | reseq2 |  |-  ( s = (/) -> ( F |` s ) = ( F |` (/) ) ) | 
						
							| 50 |  | res0 |  |-  ( F |` (/) ) = (/) | 
						
							| 51 | 49 50 | eqtrdi |  |-  ( s = (/) -> ( F |` s ) = (/) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( s = (/) -> ( G gsum ( F |` s ) ) = ( G gsum (/) ) ) | 
						
							| 53 | 26 | gsum0 |  |-  ( G gsum (/) ) = 0 | 
						
							| 54 | 52 53 | eqtrdi |  |-  ( s = (/) -> ( G gsum ( F |` s ) ) = 0 ) | 
						
							| 55 | 48 54 | elrnmpt1s |  |-  ( ( (/) e. ( ~P A i^i Fin ) /\ 0 e. CC ) -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) | 
						
							| 56 | 46 47 55 | mp2an |  |-  0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) | 
						
							| 57 | 56 | a1i |  |-  ( ph -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) | 
						
							| 58 | 42 57 | sseldd |  |-  ( ph -> 0 e. RR* ) | 
						
							| 59 | 28 | a1i |  |-  ( ph -> G e. CMnd ) | 
						
							| 60 | 4 | elin2d |  |-  ( ph -> B e. Fin ) | 
						
							| 61 |  | diffi |  |-  ( B e. Fin -> ( B \ C ) e. Fin ) | 
						
							| 62 | 60 61 | syl |  |-  ( ph -> ( B \ C ) e. Fin ) | 
						
							| 63 |  | elfpw |  |-  ( B e. ( ~P A i^i Fin ) <-> ( B C_ A /\ B e. Fin ) ) | 
						
							| 64 | 63 | simplbi |  |-  ( B e. ( ~P A i^i Fin ) -> B C_ A ) | 
						
							| 65 | 4 64 | syl |  |-  ( ph -> B C_ A ) | 
						
							| 66 | 65 | ssdifssd |  |-  ( ph -> ( B \ C ) C_ A ) | 
						
							| 67 | 3 66 | fssresd |  |-  ( ph -> ( F |` ( B \ C ) ) : ( B \ C ) --> ( 0 [,] +oo ) ) | 
						
							| 68 | 36 | a1i |  |-  ( ph -> 0 e. _V ) | 
						
							| 69 | 67 62 68 | fdmfifsupp |  |-  ( ph -> ( F |` ( B \ C ) ) finSupp 0 ) | 
						
							| 70 | 9 26 59 62 67 69 | gsumcl |  |-  ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 71 | 6 70 | sselid |  |-  ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. RR* ) | 
						
							| 72 | 60 5 | ssfid |  |-  ( ph -> C e. Fin ) | 
						
							| 73 | 5 65 | sstrd |  |-  ( ph -> C C_ A ) | 
						
							| 74 | 3 73 | fssresd |  |-  ( ph -> ( F |` C ) : C --> ( 0 [,] +oo ) ) | 
						
							| 75 | 74 72 68 | fdmfifsupp |  |-  ( ph -> ( F |` C ) finSupp 0 ) | 
						
							| 76 | 9 26 59 72 74 75 | gsumcl |  |-  ( ph -> ( G gsum ( F |` C ) ) e. ( 0 [,] +oo ) ) | 
						
							| 77 | 6 76 | sselid |  |-  ( ph -> ( G gsum ( F |` C ) ) e. RR* ) | 
						
							| 78 |  | elxrge0 |  |-  ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) <-> ( ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) ) | 
						
							| 79 | 78 | simprbi |  |-  ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) | 
						
							| 80 | 70 79 | syl |  |-  ( ph -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) | 
						
							| 81 |  | xleadd2a |  |-  ( ( ( 0 e. RR* /\ ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ ( G gsum ( F |` C ) ) e. RR* ) /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) | 
						
							| 82 | 58 71 77 80 81 | syl31anc |  |-  ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) | 
						
							| 83 | 77 | xaddridd |  |-  ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) = ( G gsum ( F |` C ) ) ) | 
						
							| 84 |  | ovex |  |-  ( 0 [,] +oo ) e. _V | 
						
							| 85 |  | xrsadd |  |-  +e = ( +g ` RR*s ) | 
						
							| 86 | 1 85 | ressplusg |  |-  ( ( 0 [,] +oo ) e. _V -> +e = ( +g ` G ) ) | 
						
							| 87 | 84 86 | ax-mp |  |-  +e = ( +g ` G ) | 
						
							| 88 | 3 65 | fssresd |  |-  ( ph -> ( F |` B ) : B --> ( 0 [,] +oo ) ) | 
						
							| 89 | 88 60 68 | fdmfifsupp |  |-  ( ph -> ( F |` B ) finSupp 0 ) | 
						
							| 90 |  | disjdif |  |-  ( C i^i ( B \ C ) ) = (/) | 
						
							| 91 | 90 | a1i |  |-  ( ph -> ( C i^i ( B \ C ) ) = (/) ) | 
						
							| 92 |  | undif2 |  |-  ( C u. ( B \ C ) ) = ( C u. B ) | 
						
							| 93 |  | ssequn1 |  |-  ( C C_ B <-> ( C u. B ) = B ) | 
						
							| 94 | 5 93 | sylib |  |-  ( ph -> ( C u. B ) = B ) | 
						
							| 95 | 92 94 | eqtr2id |  |-  ( ph -> B = ( C u. ( B \ C ) ) ) | 
						
							| 96 | 9 26 87 59 4 88 89 91 95 | gsumsplit |  |-  ( ph -> ( G gsum ( F |` B ) ) = ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) ) | 
						
							| 97 | 5 | resabs1d |  |-  ( ph -> ( ( F |` B ) |` C ) = ( F |` C ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ph -> ( G gsum ( ( F |` B ) |` C ) ) = ( G gsum ( F |` C ) ) ) | 
						
							| 99 |  | difss |  |-  ( B \ C ) C_ B | 
						
							| 100 |  | resabs1 |  |-  ( ( B \ C ) C_ B -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) | 
						
							| 101 | 99 100 | mp1i |  |-  ( ph -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( ph -> ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) = ( G gsum ( F |` ( B \ C ) ) ) ) | 
						
							| 103 | 98 102 | oveq12d |  |-  ( ph -> ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) = ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) | 
						
							| 104 | 96 103 | eqtr2d |  |-  ( ph -> ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) = ( G gsum ( F |` B ) ) ) | 
						
							| 105 | 82 83 104 | 3brtr3d |  |-  ( ph -> ( G gsum ( F |` C ) ) <_ ( G gsum ( F |` B ) ) ) |