Metamath Proof Explorer


Theorem xrge0haus

Description: The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017)

Ref Expression
Assertion xrge0haus
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. Haus

Proof

Step Hyp Ref Expression
1 xrge0topn
 |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
2 xrhaus
 |-  ( ordTop ` <_ ) e. Haus
3 ovex
 |-  ( 0 [,] +oo ) e. _V
4 resthaus
 |-  ( ( ( ordTop ` <_ ) e. Haus /\ ( 0 [,] +oo ) e. _V ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus )
5 2 3 4 mp2an
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Haus
6 1 5 eqeltri
 |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) e. Haus