| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0iifhmeo.1 |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) | 
						
							| 2 |  | xrge0iifhmeo.k |  |-  J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) | 
						
							| 3 |  | letsr |  |-  <_ e. TosetRel | 
						
							| 4 |  | tsrps |  |-  ( <_ e. TosetRel -> <_ e. PosetRel ) | 
						
							| 5 | 3 4 | ax-mp |  |-  <_ e. PosetRel | 
						
							| 6 | 5 | elexi |  |-  <_ e. _V | 
						
							| 7 | 6 | inex1 |  |-  ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V | 
						
							| 8 |  | cnvps |  |-  ( <_ e. PosetRel -> `' <_ e. PosetRel ) | 
						
							| 9 | 5 8 | ax-mp |  |-  `' <_ e. PosetRel | 
						
							| 10 | 9 | elexi |  |-  `' <_ e. _V | 
						
							| 11 | 10 | inex1 |  |-  ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V | 
						
							| 12 | 1 | xrge0iifiso |  |-  F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 13 |  | iccssxr |  |-  ( 0 [,] 1 ) C_ RR* | 
						
							| 14 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 15 |  | gtiso |  |-  ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 17 | 12 16 | mpbi |  |-  F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 18 |  | isores1 |  |-  ( F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 19 | 17 18 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 20 |  | isores2 |  |-  ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 21 | 19 20 | mpbi |  |-  F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) | 
						
							| 22 |  | ledm |  |-  RR* = dom <_ | 
						
							| 23 | 22 | psssdm |  |-  ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) | 
						
							| 24 | 5 13 23 | mp2an |  |-  dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) | 
						
							| 25 | 24 | eqcomi |  |-  ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 26 |  | lern |  |-  RR* = ran <_ | 
						
							| 27 |  | df-rn |  |-  ran <_ = dom `' <_ | 
						
							| 28 | 26 27 | eqtri |  |-  RR* = dom `' <_ | 
						
							| 29 | 28 | psssdm |  |-  ( ( `' <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) | 
						
							| 30 | 9 14 29 | mp2an |  |-  dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) | 
						
							| 31 | 30 | eqcomi |  |-  ( 0 [,] +oo ) = dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) | 
						
							| 32 | 25 31 | ordthmeo |  |-  ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) | 
						
							| 33 | 7 11 21 32 | mp3an |  |-  F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) | 
						
							| 34 |  | dfii5 |  |-  II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 35 |  | iccss2 |  |-  ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x [,] y ) C_ ( 0 [,] +oo ) ) | 
						
							| 36 | 14 35 | cnvordtrestixx |  |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) | 
						
							| 37 | 2 36 | eqtri |  |-  J = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) | 
						
							| 38 | 34 37 | oveq12i |  |-  ( II Homeo J ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) | 
						
							| 39 | 33 38 | eleqtrri |  |-  F e. ( II Homeo J ) |