| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0iifhmeo.1 |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) | 
						
							| 2 |  | xrge0iifhmeo.k |  |-  J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) | 
						
							| 3 |  | 0xr |  |-  0 e. RR* | 
						
							| 4 |  | 1xr |  |-  1 e. RR* | 
						
							| 5 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 6 |  | snunioc |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) | 
						
							| 7 | 3 4 5 6 | mp3an |  |-  ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) | 
						
							| 8 | 7 | eleq2i |  |-  ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> Y e. ( 0 [,] 1 ) ) | 
						
							| 9 |  | elun |  |-  ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) | 
						
							| 10 | 8 9 | bitr3i |  |-  ( Y e. ( 0 [,] 1 ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) | 
						
							| 11 |  | elsni |  |-  ( Y e. { 0 } -> Y = 0 ) | 
						
							| 12 | 11 | orim1i |  |-  ( ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) | 
						
							| 13 | 10 12 | sylbi |  |-  ( Y e. ( 0 [,] 1 ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) | 
						
							| 14 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 15 |  | iftrue |  |-  ( x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = +oo ) | 
						
							| 16 |  | pnfex |  |-  +oo e. _V | 
						
							| 17 | 15 1 16 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = +oo ) | 
						
							| 18 | 14 17 | ax-mp |  |-  ( F ` 0 ) = +oo | 
						
							| 19 | 18 | oveq2i |  |-  ( ( F ` X ) +e ( F ` 0 ) ) = ( ( F ` X ) +e +oo ) | 
						
							| 20 |  | eqeq1 |  |-  ( x = X -> ( x = 0 <-> X = 0 ) ) | 
						
							| 21 |  | fveq2 |  |-  ( x = X -> ( log ` x ) = ( log ` X ) ) | 
						
							| 22 | 21 | negeqd |  |-  ( x = X -> -u ( log ` x ) = -u ( log ` X ) ) | 
						
							| 23 | 20 22 | ifbieq2d |  |-  ( x = X -> if ( x = 0 , +oo , -u ( log ` x ) ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) | 
						
							| 24 |  | negex |  |-  -u ( log ` X ) e. _V | 
						
							| 25 | 16 24 | ifex |  |-  if ( X = 0 , +oo , -u ( log ` X ) ) e. _V | 
						
							| 26 | 23 1 25 | fvmpt |  |-  ( X e. ( 0 [,] 1 ) -> ( F ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) | 
						
							| 27 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 28 | 27 | a1i |  |-  ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo e. RR* ) | 
						
							| 29 |  | elunitrn |  |-  ( X e. ( 0 [,] 1 ) -> X e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR ) | 
						
							| 31 |  | elunitge0 |  |-  ( X e. ( 0 [,] 1 ) -> 0 <_ X ) | 
						
							| 32 | 31 | adantr |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 <_ X ) | 
						
							| 33 |  | simpr |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -. X = 0 ) | 
						
							| 34 | 33 | neqned |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X =/= 0 ) | 
						
							| 35 | 30 32 34 | ne0gt0d |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 < X ) | 
						
							| 36 | 30 35 | elrpd |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR+ ) | 
						
							| 37 | 36 | relogcld |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> ( log ` X ) e. RR ) | 
						
							| 38 | 37 | renegcld |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR ) | 
						
							| 39 | 38 | rexrd |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR* ) | 
						
							| 40 | 28 39 | ifclda |  |-  ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) e. RR* ) | 
						
							| 41 | 26 40 | eqeltrd |  |-  ( X e. ( 0 [,] 1 ) -> ( F ` X ) e. RR* ) | 
						
							| 42 | 41 | adantr |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) e. RR* ) | 
						
							| 43 |  | neeq1 |  |-  ( +oo = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( +oo =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) | 
						
							| 44 |  | neeq1 |  |-  ( -u ( log ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( -u ( log ` X ) =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) | 
						
							| 45 |  | pnfnemnf |  |-  +oo =/= -oo | 
						
							| 46 | 45 | a1i |  |-  ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo =/= -oo ) | 
						
							| 47 | 38 | renemnfd |  |-  ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) =/= -oo ) | 
						
							| 48 | 43 44 46 47 | ifbothda |  |-  ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) | 
						
							| 49 | 26 48 | eqnetrd |  |-  ( X e. ( 0 [,] 1 ) -> ( F ` X ) =/= -oo ) | 
						
							| 50 | 49 | adantr |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) =/= -oo ) | 
						
							| 51 |  | xaddpnf1 |  |-  ( ( ( F ` X ) e. RR* /\ ( F ` X ) =/= -oo ) -> ( ( F ` X ) +e +oo ) = +oo ) | 
						
							| 52 | 42 50 51 | syl2anc |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e +oo ) = +oo ) | 
						
							| 53 | 19 52 | eqtrid |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = +oo ) | 
						
							| 54 |  | unitsscn |  |-  ( 0 [,] 1 ) C_ CC | 
						
							| 55 |  | simpl |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. ( 0 [,] 1 ) ) | 
						
							| 56 | 54 55 | sselid |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. CC ) | 
						
							| 57 | 56 | mul01d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. 0 ) = 0 ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = ( F ` 0 ) ) | 
						
							| 59 | 58 18 | eqtrdi |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = +oo ) | 
						
							| 60 | 53 59 | eqtr4d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = ( F ` ( X x. 0 ) ) ) | 
						
							| 61 |  | simpr |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> Y = 0 ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` Y ) = ( F ` 0 ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` X ) +e ( F ` 0 ) ) ) | 
						
							| 64 | 61 | oveq2d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. Y ) = ( X x. 0 ) ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( F ` ( X x. 0 ) ) ) | 
						
							| 66 | 60 63 65 | 3eqtr4rd |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 67 | 7 | eleq2i |  |-  ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> X e. ( 0 [,] 1 ) ) | 
						
							| 68 |  | elun |  |-  ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) | 
						
							| 69 | 67 68 | bitr3i |  |-  ( X e. ( 0 [,] 1 ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) | 
						
							| 70 |  | elsni |  |-  ( X e. { 0 } -> X = 0 ) | 
						
							| 71 | 70 | orim1i |  |-  ( ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) | 
						
							| 72 | 69 71 | sylbi |  |-  ( X e. ( 0 [,] 1 ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) | 
						
							| 73 | 18 | oveq1i |  |-  ( ( F ` 0 ) +e ( F ` Y ) ) = ( +oo +e ( F ` Y ) ) | 
						
							| 74 |  | simpr |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) | 
						
							| 75 | 1 | xrge0iifcv |  |-  ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) = -u ( log ` Y ) ) | 
						
							| 76 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 77 |  | 1re |  |-  1 e. RR | 
						
							| 78 |  | ltpnf |  |-  ( 1 e. RR -> 1 < +oo ) | 
						
							| 79 | 77 78 | ax-mp |  |-  1 < +oo | 
						
							| 80 |  | iocssioo |  |-  ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 <_ 0 /\ 1 < +oo ) ) -> ( 0 (,] 1 ) C_ ( 0 (,) +oo ) ) | 
						
							| 81 | 3 27 76 79 80 | mp4an |  |-  ( 0 (,] 1 ) C_ ( 0 (,) +oo ) | 
						
							| 82 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 83 | 81 82 | sseqtri |  |-  ( 0 (,] 1 ) C_ RR+ | 
						
							| 84 | 83 | sseli |  |-  ( Y e. ( 0 (,] 1 ) -> Y e. RR+ ) | 
						
							| 85 | 84 | relogcld |  |-  ( Y e. ( 0 (,] 1 ) -> ( log ` Y ) e. RR ) | 
						
							| 86 | 85 | renegcld |  |-  ( Y e. ( 0 (,] 1 ) -> -u ( log ` Y ) e. RR ) | 
						
							| 87 | 75 86 | eqeltrd |  |-  ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR ) | 
						
							| 88 | 87 | rexrd |  |-  ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR* ) | 
						
							| 89 | 74 88 | syl |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) e. RR* ) | 
						
							| 90 | 87 | renemnfd |  |-  ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) =/= -oo ) | 
						
							| 91 | 74 90 | syl |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) =/= -oo ) | 
						
							| 92 |  | xaddpnf2 |  |-  ( ( ( F ` Y ) e. RR* /\ ( F ` Y ) =/= -oo ) -> ( +oo +e ( F ` Y ) ) = +oo ) | 
						
							| 93 | 89 91 92 | syl2anc |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( +oo +e ( F ` Y ) ) = +oo ) | 
						
							| 94 | 73 93 | eqtrid |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = +oo ) | 
						
							| 95 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 96 | 83 95 | sstri |  |-  ( 0 (,] 1 ) C_ RR | 
						
							| 97 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 98 | 96 97 | sstri |  |-  ( 0 (,] 1 ) C_ CC | 
						
							| 99 | 98 74 | sselid |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. CC ) | 
						
							| 100 | 99 | mul02d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( 0 x. Y ) = 0 ) | 
						
							| 101 | 100 | fveq2d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = ( F ` 0 ) ) | 
						
							| 102 | 101 18 | eqtrdi |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = +oo ) | 
						
							| 103 | 94 102 | eqtr4d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = ( F ` ( 0 x. Y ) ) ) | 
						
							| 104 |  | simpl |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> X = 0 ) | 
						
							| 105 | 104 | fveq2d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` X ) = ( F ` 0 ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` 0 ) +e ( F ` Y ) ) ) | 
						
							| 107 | 104 | fvoveq1d |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( F ` ( 0 x. Y ) ) ) | 
						
							| 108 | 103 106 107 | 3eqtr4rd |  |-  ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 109 |  | simpl |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 (,] 1 ) ) | 
						
							| 110 | 83 109 | sselid |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR+ ) | 
						
							| 111 | 110 | relogcld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. RR ) | 
						
							| 112 | 111 | renegcld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` X ) e. RR ) | 
						
							| 113 |  | simpr |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) | 
						
							| 114 | 83 113 | sselid |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR+ ) | 
						
							| 115 | 114 | relogcld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. RR ) | 
						
							| 116 | 115 | renegcld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` Y ) e. RR ) | 
						
							| 117 |  | rexadd |  |-  ( ( -u ( log ` X ) e. RR /\ -u ( log ` Y ) e. RR ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) | 
						
							| 118 | 112 116 117 | syl2anc |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) | 
						
							| 119 | 1 | xrge0iifcv |  |-  ( X e. ( 0 (,] 1 ) -> ( F ` X ) = -u ( log ` X ) ) | 
						
							| 120 | 119 75 | oveqan12d |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( -u ( log ` X ) +e -u ( log ` Y ) ) ) | 
						
							| 121 | 110 | rpred |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR ) | 
						
							| 122 | 114 | rpred |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR ) | 
						
							| 123 | 121 122 | remulcld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. RR ) | 
						
							| 124 | 110 | rpgt0d |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < X ) | 
						
							| 125 | 114 | rpgt0d |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < Y ) | 
						
							| 126 | 121 122 124 125 | mulgt0d |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < ( X x. Y ) ) | 
						
							| 127 |  | iocssicc |  |-  ( 0 (,] 1 ) C_ ( 0 [,] 1 ) | 
						
							| 128 | 127 109 | sselid |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 [,] 1 ) ) | 
						
							| 129 | 127 113 | sselid |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 [,] 1 ) ) | 
						
							| 130 |  | iimulcl |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) | 
						
							| 131 | 128 129 130 | syl2anc |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) | 
						
							| 132 |  | elicc01 |  |-  ( ( X x. Y ) e. ( 0 [,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 <_ ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) | 
						
							| 133 | 132 | simp3bi |  |-  ( ( X x. Y ) e. ( 0 [,] 1 ) -> ( X x. Y ) <_ 1 ) | 
						
							| 134 | 131 133 | syl |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) <_ 1 ) | 
						
							| 135 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) ) | 
						
							| 136 | 3 77 135 | mp2an |  |-  ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) | 
						
							| 137 | 123 126 134 136 | syl3anbrc |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 (,] 1 ) ) | 
						
							| 138 | 1 | xrge0iifcv |  |-  ( ( X x. Y ) e. ( 0 (,] 1 ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) | 
						
							| 139 | 137 138 | syl |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) | 
						
							| 140 | 110 114 | relogmuld |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` ( X x. Y ) ) = ( ( log ` X ) + ( log ` Y ) ) ) | 
						
							| 141 | 140 | negeqd |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` ( X x. Y ) ) = -u ( ( log ` X ) + ( log ` Y ) ) ) | 
						
							| 142 | 111 | recnd |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. CC ) | 
						
							| 143 | 115 | recnd |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. CC ) | 
						
							| 144 | 142 143 | negdid |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( ( log ` X ) + ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) | 
						
							| 145 | 139 141 144 | 3eqtrd |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) | 
						
							| 146 | 118 120 145 | 3eqtr4rd |  |-  ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 147 | 108 146 | jaoian |  |-  ( ( ( X = 0 \/ X e. ( 0 (,] 1 ) ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 148 | 72 147 | sylan |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 149 | 66 148 | jaodan |  |-  ( ( X e. ( 0 [,] 1 ) /\ ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) | 
						
							| 150 | 13 149 | sylan2 |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |