| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0iifhmeo.1 |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) | 
						
							| 2 |  | iccssxr |  |-  ( 0 [,] 1 ) C_ RR* | 
						
							| 3 |  | xrltso |  |-  < Or RR* | 
						
							| 4 |  | soss |  |-  ( ( 0 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] 1 ) ) ) | 
						
							| 5 | 2 3 4 | mp2 |  |-  < Or ( 0 [,] 1 ) | 
						
							| 6 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 7 |  | cnvso |  |-  ( < Or RR* <-> `' < Or RR* ) | 
						
							| 8 | 3 7 | mpbi |  |-  `' < Or RR* | 
						
							| 9 |  | sopo |  |-  ( `' < Or RR* -> `' < Po RR* ) | 
						
							| 10 | 8 9 | ax-mp |  |-  `' < Po RR* | 
						
							| 11 |  | poss |  |-  ( ( 0 [,] +oo ) C_ RR* -> ( `' < Po RR* -> `' < Po ( 0 [,] +oo ) ) ) | 
						
							| 12 | 6 10 11 | mp2 |  |-  `' < Po ( 0 [,] +oo ) | 
						
							| 13 | 1 | xrge0iifcnv |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( z e. ( 0 [,] +oo ) |-> if ( z = +oo , 0 , ( exp ` -u z ) ) ) ) | 
						
							| 14 | 13 | simpli |  |-  F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) | 
						
							| 15 |  | f1ofo |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) | 
						
							| 17 |  | 0xr |  |-  0 e. RR* | 
						
							| 18 |  | 1xr |  |-  1 e. RR* | 
						
							| 19 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 20 |  | snunioc |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) | 
						
							| 21 | 17 18 19 20 | mp3an |  |-  ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) | 
						
							| 22 | 21 | eleq2i |  |-  ( w e. ( { 0 } u. ( 0 (,] 1 ) ) <-> w e. ( 0 [,] 1 ) ) | 
						
							| 23 |  | elun |  |-  ( w e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( w e. { 0 } \/ w e. ( 0 (,] 1 ) ) ) | 
						
							| 24 | 22 23 | bitr3i |  |-  ( w e. ( 0 [,] 1 ) <-> ( w e. { 0 } \/ w e. ( 0 (,] 1 ) ) ) | 
						
							| 25 |  | velsn |  |-  ( w e. { 0 } <-> w = 0 ) | 
						
							| 26 |  | elunitrn |  |-  ( z e. ( 0 [,] 1 ) -> z e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( z e. ( 0 [,] 1 ) /\ 0 < z ) -> z e. RR ) | 
						
							| 28 |  | simpr |  |-  ( ( z e. ( 0 [,] 1 ) /\ 0 < z ) -> 0 < z ) | 
						
							| 29 |  | elicc01 |  |-  ( z e. ( 0 [,] 1 ) <-> ( z e. RR /\ 0 <_ z /\ z <_ 1 ) ) | 
						
							| 30 | 29 | simp3bi |  |-  ( z e. ( 0 [,] 1 ) -> z <_ 1 ) | 
						
							| 31 | 30 | adantr |  |-  ( ( z e. ( 0 [,] 1 ) /\ 0 < z ) -> z <_ 1 ) | 
						
							| 32 |  | 1re |  |-  1 e. RR | 
						
							| 33 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( z e. ( 0 (,] 1 ) <-> ( z e. RR /\ 0 < z /\ z <_ 1 ) ) ) | 
						
							| 34 | 17 32 33 | mp2an |  |-  ( z e. ( 0 (,] 1 ) <-> ( z e. RR /\ 0 < z /\ z <_ 1 ) ) | 
						
							| 35 | 27 28 31 34 | syl3anbrc |  |-  ( ( z e. ( 0 [,] 1 ) /\ 0 < z ) -> z e. ( 0 (,] 1 ) ) | 
						
							| 36 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 37 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 38 |  | ltpnf |  |-  ( 1 e. RR -> 1 < +oo ) | 
						
							| 39 | 32 38 | ax-mp |  |-  1 < +oo | 
						
							| 40 |  | iocssioo |  |-  ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 <_ 0 /\ 1 < +oo ) ) -> ( 0 (,] 1 ) C_ ( 0 (,) +oo ) ) | 
						
							| 41 | 17 36 37 39 40 | mp4an |  |-  ( 0 (,] 1 ) C_ ( 0 (,) +oo ) | 
						
							| 42 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 43 | 41 42 | sseqtri |  |-  ( 0 (,] 1 ) C_ RR+ | 
						
							| 44 | 43 | sseli |  |-  ( z e. ( 0 (,] 1 ) -> z e. RR+ ) | 
						
							| 45 |  | relogcl |  |-  ( z e. RR+ -> ( log ` z ) e. RR ) | 
						
							| 46 | 45 | renegcld |  |-  ( z e. RR+ -> -u ( log ` z ) e. RR ) | 
						
							| 47 |  | ltpnf |  |-  ( -u ( log ` z ) e. RR -> -u ( log ` z ) < +oo ) | 
						
							| 48 | 46 47 | syl |  |-  ( z e. RR+ -> -u ( log ` z ) < +oo ) | 
						
							| 49 |  | brcnvg |  |-  ( ( +oo e. RR* /\ -u ( log ` z ) e. RR ) -> ( +oo `' < -u ( log ` z ) <-> -u ( log ` z ) < +oo ) ) | 
						
							| 50 | 36 46 49 | sylancr |  |-  ( z e. RR+ -> ( +oo `' < -u ( log ` z ) <-> -u ( log ` z ) < +oo ) ) | 
						
							| 51 | 48 50 | mpbird |  |-  ( z e. RR+ -> +oo `' < -u ( log ` z ) ) | 
						
							| 52 | 44 51 | syl |  |-  ( z e. ( 0 (,] 1 ) -> +oo `' < -u ( log ` z ) ) | 
						
							| 53 | 1 | xrge0iifcv |  |-  ( z e. ( 0 (,] 1 ) -> ( F ` z ) = -u ( log ` z ) ) | 
						
							| 54 | 52 53 | breqtrrd |  |-  ( z e. ( 0 (,] 1 ) -> +oo `' < ( F ` z ) ) | 
						
							| 55 | 35 54 | syl |  |-  ( ( z e. ( 0 [,] 1 ) /\ 0 < z ) -> +oo `' < ( F ` z ) ) | 
						
							| 56 | 55 | ex |  |-  ( z e. ( 0 [,] 1 ) -> ( 0 < z -> +oo `' < ( F ` z ) ) ) | 
						
							| 57 |  | breq1 |  |-  ( w = 0 -> ( w < z <-> 0 < z ) ) | 
						
							| 58 |  | fveq2 |  |-  ( w = 0 -> ( F ` w ) = ( F ` 0 ) ) | 
						
							| 59 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 60 |  | iftrue |  |-  ( x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = +oo ) | 
						
							| 61 |  | pnfex |  |-  +oo e. _V | 
						
							| 62 | 60 1 61 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = +oo ) | 
						
							| 63 | 59 62 | ax-mp |  |-  ( F ` 0 ) = +oo | 
						
							| 64 | 58 63 | eqtrdi |  |-  ( w = 0 -> ( F ` w ) = +oo ) | 
						
							| 65 | 64 | breq1d |  |-  ( w = 0 -> ( ( F ` w ) `' < ( F ` z ) <-> +oo `' < ( F ` z ) ) ) | 
						
							| 66 | 57 65 | imbi12d |  |-  ( w = 0 -> ( ( w < z -> ( F ` w ) `' < ( F ` z ) ) <-> ( 0 < z -> +oo `' < ( F ` z ) ) ) ) | 
						
							| 67 | 56 66 | imbitrrid |  |-  ( w = 0 -> ( z e. ( 0 [,] 1 ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) | 
						
							| 68 | 25 67 | sylbi |  |-  ( w e. { 0 } -> ( z e. ( 0 [,] 1 ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) | 
						
							| 69 |  | simpll |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> w e. ( 0 (,] 1 ) ) | 
						
							| 70 | 26 | ad2antlr |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> z e. RR ) | 
						
							| 71 |  | 0re |  |-  0 e. RR | 
						
							| 72 | 71 | a1i |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> 0 e. RR ) | 
						
							| 73 | 43 | sseli |  |-  ( w e. ( 0 (,] 1 ) -> w e. RR+ ) | 
						
							| 74 | 73 | rpred |  |-  ( w e. ( 0 (,] 1 ) -> w e. RR ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> w e. RR ) | 
						
							| 76 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( w e. ( 0 (,] 1 ) <-> ( w e. RR /\ 0 < w /\ w <_ 1 ) ) ) | 
						
							| 77 | 17 32 76 | mp2an |  |-  ( w e. ( 0 (,] 1 ) <-> ( w e. RR /\ 0 < w /\ w <_ 1 ) ) | 
						
							| 78 | 77 | simp2bi |  |-  ( w e. ( 0 (,] 1 ) -> 0 < w ) | 
						
							| 79 | 78 | ad2antrr |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> 0 < w ) | 
						
							| 80 |  | simpr |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> w < z ) | 
						
							| 81 | 72 75 70 79 80 | lttrd |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> 0 < z ) | 
						
							| 82 | 30 | ad2antlr |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> z <_ 1 ) | 
						
							| 83 | 70 81 82 34 | syl3anbrc |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> z e. ( 0 (,] 1 ) ) | 
						
							| 84 | 69 83 | jca |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) ) | 
						
							| 85 | 73 | adantr |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> w e. RR+ ) | 
						
							| 86 | 85 | relogcld |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( log ` w ) e. RR ) | 
						
							| 87 | 44 | adantl |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> z e. RR+ ) | 
						
							| 88 | 87 | relogcld |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( log ` z ) e. RR ) | 
						
							| 89 | 86 88 | ltnegd |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( ( log ` w ) < ( log ` z ) <-> -u ( log ` z ) < -u ( log ` w ) ) ) | 
						
							| 90 |  | logltb |  |-  ( ( w e. RR+ /\ z e. RR+ ) -> ( w < z <-> ( log ` w ) < ( log ` z ) ) ) | 
						
							| 91 | 73 44 90 | syl2an |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( w < z <-> ( log ` w ) < ( log ` z ) ) ) | 
						
							| 92 |  | negex |  |-  -u ( log ` w ) e. _V | 
						
							| 93 |  | negex |  |-  -u ( log ` z ) e. _V | 
						
							| 94 | 92 93 | brcnv |  |-  ( -u ( log ` w ) `' < -u ( log ` z ) <-> -u ( log ` z ) < -u ( log ` w ) ) | 
						
							| 95 | 94 | a1i |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( -u ( log ` w ) `' < -u ( log ` z ) <-> -u ( log ` z ) < -u ( log ` w ) ) ) | 
						
							| 96 | 89 91 95 | 3bitr4d |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( w < z <-> -u ( log ` w ) `' < -u ( log ` z ) ) ) | 
						
							| 97 | 96 | biimpd |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( w < z -> -u ( log ` w ) `' < -u ( log ` z ) ) ) | 
						
							| 98 | 1 | xrge0iifcv |  |-  ( w e. ( 0 (,] 1 ) -> ( F ` w ) = -u ( log ` w ) ) | 
						
							| 99 | 98 53 | breqan12d |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( ( F ` w ) `' < ( F ` z ) <-> -u ( log ` w ) `' < -u ( log ` z ) ) ) | 
						
							| 100 | 97 99 | sylibrd |  |-  ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 (,] 1 ) ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) | 
						
							| 101 | 84 80 100 | sylc |  |-  ( ( ( w e. ( 0 (,] 1 ) /\ z e. ( 0 [,] 1 ) ) /\ w < z ) -> ( F ` w ) `' < ( F ` z ) ) | 
						
							| 102 | 101 | exp31 |  |-  ( w e. ( 0 (,] 1 ) -> ( z e. ( 0 [,] 1 ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) | 
						
							| 103 | 68 102 | jaoi |  |-  ( ( w e. { 0 } \/ w e. ( 0 (,] 1 ) ) -> ( z e. ( 0 [,] 1 ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) | 
						
							| 104 | 24 103 | sylbi |  |-  ( w e. ( 0 [,] 1 ) -> ( z e. ( 0 [,] 1 ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) | 
						
							| 105 | 104 | imp |  |-  ( ( w e. ( 0 [,] 1 ) /\ z e. ( 0 [,] 1 ) ) -> ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) | 
						
							| 106 | 105 | rgen2 |  |-  A. w e. ( 0 [,] 1 ) A. z e. ( 0 [,] 1 ) ( w < z -> ( F ` w ) `' < ( F ` z ) ) | 
						
							| 107 |  | soisoi |  |-  ( ( ( < Or ( 0 [,] 1 ) /\ `' < Po ( 0 [,] +oo ) ) /\ ( F : ( 0 [,] 1 ) -onto-> ( 0 [,] +oo ) /\ A. w e. ( 0 [,] 1 ) A. z e. ( 0 [,] 1 ) ( w < z -> ( F ` w ) `' < ( F ` z ) ) ) ) -> F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) | 
						
							| 108 | 5 12 16 106 107 | mp4an |  |-  F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |