Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0mulc1cn.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
2 |
|
xrge0mulc1cn.f |
|- F = ( x e. ( 0 [,] +oo ) |-> ( x *e C ) ) |
3 |
|
xrge0mulc1cn.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
4 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
6 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
7 |
4 5 6
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
8 |
1 7
|
eqeltri |
|- J e. ( TopOn ` ( 0 [,] +oo ) ) |
9 |
8
|
a1i |
|- ( C = 0 -> J e. ( TopOn ` ( 0 [,] +oo ) ) ) |
10 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
11 |
10
|
a1i |
|- ( C = 0 -> 0 e. ( 0 [,] +oo ) ) |
12 |
|
simpl |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> C = 0 ) |
13 |
12
|
oveq2d |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> ( x *e C ) = ( x *e 0 ) ) |
14 |
|
simpr |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) |
15 |
5 14
|
sselid |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> x e. RR* ) |
16 |
|
xmul01 |
|- ( x e. RR* -> ( x *e 0 ) = 0 ) |
17 |
15 16
|
syl |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> ( x *e 0 ) = 0 ) |
18 |
13 17
|
eqtrd |
|- ( ( C = 0 /\ x e. ( 0 [,] +oo ) ) -> ( x *e C ) = 0 ) |
19 |
18
|
mpteq2dva |
|- ( C = 0 -> ( x e. ( 0 [,] +oo ) |-> ( x *e C ) ) = ( x e. ( 0 [,] +oo ) |-> 0 ) ) |
20 |
|
fconstmpt |
|- ( ( 0 [,] +oo ) X. { 0 } ) = ( x e. ( 0 [,] +oo ) |-> 0 ) |
21 |
19 2 20
|
3eqtr4g |
|- ( C = 0 -> F = ( ( 0 [,] +oo ) X. { 0 } ) ) |
22 |
|
c0ex |
|- 0 e. _V |
23 |
22
|
fconst2 |
|- ( F : ( 0 [,] +oo ) --> { 0 } <-> F = ( ( 0 [,] +oo ) X. { 0 } ) ) |
24 |
21 23
|
sylibr |
|- ( C = 0 -> F : ( 0 [,] +oo ) --> { 0 } ) |
25 |
|
cnconst |
|- ( ( ( J e. ( TopOn ` ( 0 [,] +oo ) ) /\ J e. ( TopOn ` ( 0 [,] +oo ) ) ) /\ ( 0 e. ( 0 [,] +oo ) /\ F : ( 0 [,] +oo ) --> { 0 } ) ) -> F e. ( J Cn J ) ) |
26 |
9 9 11 24 25
|
syl22anc |
|- ( C = 0 -> F e. ( J Cn J ) ) |
27 |
26
|
adantl |
|- ( ( ph /\ C = 0 ) -> F e. ( J Cn J ) ) |
28 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
29 |
|
oveq1 |
|- ( x = y -> ( x *e C ) = ( y *e C ) ) |
30 |
29
|
cbvmptv |
|- ( x e. RR* |-> ( x *e C ) ) = ( y e. RR* |-> ( y *e C ) ) |
31 |
|
id |
|- ( C e. RR+ -> C e. RR+ ) |
32 |
28 30 31
|
xrmulc1cn |
|- ( C e. RR+ -> ( x e. RR* |-> ( x *e C ) ) e. ( ( ordTop ` <_ ) Cn ( ordTop ` <_ ) ) ) |
33 |
|
letopuni |
|- RR* = U. ( ordTop ` <_ ) |
34 |
33
|
cnrest |
|- ( ( ( x e. RR* |-> ( x *e C ) ) e. ( ( ordTop ` <_ ) Cn ( ordTop ` <_ ) ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( x e. RR* |-> ( x *e C ) ) |` ( 0 [,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) Cn ( ordTop ` <_ ) ) ) |
35 |
32 5 34
|
sylancl |
|- ( C e. RR+ -> ( ( x e. RR* |-> ( x *e C ) ) |` ( 0 [,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) Cn ( ordTop ` <_ ) ) ) |
36 |
|
resmpt |
|- ( ( 0 [,] +oo ) C_ RR* -> ( ( x e. RR* |-> ( x *e C ) ) |` ( 0 [,] +oo ) ) = ( x e. ( 0 [,] +oo ) |-> ( x *e C ) ) ) |
37 |
5 36
|
ax-mp |
|- ( ( x e. RR* |-> ( x *e C ) ) |` ( 0 [,] +oo ) ) = ( x e. ( 0 [,] +oo ) |-> ( x *e C ) ) |
38 |
37 2
|
eqtr4i |
|- ( ( x e. RR* |-> ( x *e C ) ) |` ( 0 [,] +oo ) ) = F |
39 |
1
|
eqcomi |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = J |
40 |
39
|
oveq1i |
|- ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) Cn ( ordTop ` <_ ) ) = ( J Cn ( ordTop ` <_ ) ) |
41 |
35 38 40
|
3eltr3g |
|- ( C e. RR+ -> F e. ( J Cn ( ordTop ` <_ ) ) ) |
42 |
4
|
a1i |
|- ( C e. RR+ -> ( ordTop ` <_ ) e. ( TopOn ` RR* ) ) |
43 |
|
simpr |
|- ( ( C e. RR+ /\ x e. ( 0 [,] +oo ) ) -> x e. ( 0 [,] +oo ) ) |
44 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
45 |
|
ioossicc |
|- ( 0 (,) +oo ) C_ ( 0 [,] +oo ) |
46 |
44 45
|
eqsstrri |
|- RR+ C_ ( 0 [,] +oo ) |
47 |
|
simpl |
|- ( ( C e. RR+ /\ x e. ( 0 [,] +oo ) ) -> C e. RR+ ) |
48 |
46 47
|
sselid |
|- ( ( C e. RR+ /\ x e. ( 0 [,] +oo ) ) -> C e. ( 0 [,] +oo ) ) |
49 |
|
ge0xmulcl |
|- ( ( x e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( x *e C ) e. ( 0 [,] +oo ) ) |
50 |
43 48 49
|
syl2anc |
|- ( ( C e. RR+ /\ x e. ( 0 [,] +oo ) ) -> ( x *e C ) e. ( 0 [,] +oo ) ) |
51 |
50 2
|
fmptd |
|- ( C e. RR+ -> F : ( 0 [,] +oo ) --> ( 0 [,] +oo ) ) |
52 |
51
|
frnd |
|- ( C e. RR+ -> ran F C_ ( 0 [,] +oo ) ) |
53 |
5
|
a1i |
|- ( C e. RR+ -> ( 0 [,] +oo ) C_ RR* ) |
54 |
|
cnrest2 |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ran F C_ ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( F e. ( J Cn ( ordTop ` <_ ) ) <-> F e. ( J Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) ) |
55 |
42 52 53 54
|
syl3anc |
|- ( C e. RR+ -> ( F e. ( J Cn ( ordTop ` <_ ) ) <-> F e. ( J Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) ) |
56 |
41 55
|
mpbid |
|- ( C e. RR+ -> F e. ( J Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
57 |
1
|
oveq2i |
|- ( J Cn J ) = ( J Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
58 |
56 57
|
eleqtrrdi |
|- ( C e. RR+ -> F e. ( J Cn J ) ) |
59 |
58 44
|
eleq2s |
|- ( C e. ( 0 (,) +oo ) -> F e. ( J Cn J ) ) |
60 |
59
|
adantl |
|- ( ( ph /\ C e. ( 0 (,) +oo ) ) -> F e. ( J Cn J ) ) |
61 |
|
0xr |
|- 0 e. RR* |
62 |
|
pnfxr |
|- +oo e. RR* |
63 |
|
0ltpnf |
|- 0 < +oo |
64 |
|
elicoelioo |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> ( C e. ( 0 [,) +oo ) <-> ( C = 0 \/ C e. ( 0 (,) +oo ) ) ) ) |
65 |
61 62 63 64
|
mp3an |
|- ( C e. ( 0 [,) +oo ) <-> ( C = 0 \/ C e. ( 0 (,) +oo ) ) ) |
66 |
3 65
|
sylib |
|- ( ph -> ( C = 0 \/ C e. ( 0 (,) +oo ) ) ) |
67 |
27 60 66
|
mpjaodan |
|- ( ph -> F e. ( J Cn J ) ) |