Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
2 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
3 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
4 |
2 3
|
sseqtri |
|- ( 0 [,] +oo ) C_ ( Base ` RR*s ) |
5 |
|
eqid |
|- ( .g ` RR*s ) = ( .g ` RR*s ) |
6 |
|
eqid |
|- ( invg ` RR*s ) = ( invg ` RR*s ) |
7 |
|
xrs0 |
|- 0 = ( 0g ` RR*s ) |
8 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
9 |
7 8
|
eqtr3i |
|- ( 0g ` RR*s ) = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
10 |
1 4 5 6 9
|
ressmulgnn0 |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( A ( .g ` RR*s ) B ) ) |
11 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
12 |
|
eliccxr |
|- ( B e. ( 0 [,] +oo ) -> B e. RR* ) |
13 |
|
xrsmulgzz |
|- ( ( A e. ZZ /\ B e. RR* ) -> ( A ( .g ` RR*s ) B ) = ( A *e B ) ) |
14 |
11 12 13
|
syl2an |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` RR*s ) B ) = ( A *e B ) ) |
15 |
10 14
|
eqtrd |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( A *e B ) ) |