Metamath Proof Explorer


Theorem xrge0nemnfd

Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xrge0nemnfd.1
|- ( ph -> A e. ( 0 [,] +oo ) )
Assertion xrge0nemnfd
|- ( ph -> A =/= -oo )

Proof

Step Hyp Ref Expression
1 xrge0nemnfd.1
 |-  ( ph -> A e. ( 0 [,] +oo ) )
2 mnfxr
 |-  -oo e. RR*
3 2 a1i
 |-  ( ph -> -oo e. RR* )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 4 1 sselid
 |-  ( ph -> A e. RR* )
6 0xr
 |-  0 e. RR*
7 6 a1i
 |-  ( ph -> 0 e. RR* )
8 mnflt0
 |-  -oo < 0
9 8 a1i
 |-  ( ph -> -oo < 0 )
10 pnfxr
 |-  +oo e. RR*
11 10 a1i
 |-  ( ph -> +oo e. RR* )
12 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A )
13 7 11 1 12 syl3anc
 |-  ( ph -> 0 <_ A )
14 3 7 5 9 13 xrltletrd
 |-  ( ph -> -oo < A )
15 3 5 14 xrgtned
 |-  ( ph -> A =/= -oo )