Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xrge0nemnfd.1 | |- ( ph -> A e. ( 0 [,] +oo ) ) |
|
Assertion | xrge0nemnfd | |- ( ph -> A =/= -oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0nemnfd.1 | |- ( ph -> A e. ( 0 [,] +oo ) ) |
|
2 | mnfxr | |- -oo e. RR* |
|
3 | 2 | a1i | |- ( ph -> -oo e. RR* ) |
4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
5 | 4 1 | sselid | |- ( ph -> A e. RR* ) |
6 | 0xr | |- 0 e. RR* |
|
7 | 6 | a1i | |- ( ph -> 0 e. RR* ) |
8 | mnflt0 | |- -oo < 0 |
|
9 | 8 | a1i | |- ( ph -> -oo < 0 ) |
10 | pnfxr | |- +oo e. RR* |
|
11 | 10 | a1i | |- ( ph -> +oo e. RR* ) |
12 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
|
13 | 7 11 1 12 | syl3anc | |- ( ph -> 0 <_ A ) |
14 | 3 7 5 9 13 | xrltletrd | |- ( ph -> -oo < A ) |
15 | 3 5 14 | xrgtned | |- ( ph -> A =/= -oo ) |