Metamath Proof Explorer


Theorem xrge0neqmnf

Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017) (Proof shortened by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion xrge0neqmnf
|- ( A e. ( 0 [,] +oo ) -> A =/= -oo )

Proof

Step Hyp Ref Expression
1 eliccxr
 |-  ( A e. ( 0 [,] +oo ) -> A e. RR* )
2 0xr
 |-  0 e. RR*
3 pnfxr
 |-  +oo e. RR*
4 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A )
5 2 3 4 mp3an12
 |-  ( A e. ( 0 [,] +oo ) -> 0 <_ A )
6 ge0nemnf
 |-  ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo )
7 1 5 6 syl2anc
 |-  ( A e. ( 0 [,] +oo ) -> A =/= -oo )