Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | xrge0nre | |- ( ( A e. ( 0 [,] +oo ) /\ -. A e. RR ) -> A = +oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxr | |- ( A e. ( 0 [,] +oo ) -> A e. RR* ) |
|
2 | xrge0neqmnf | |- ( A e. ( 0 [,] +oo ) -> A =/= -oo ) |
|
3 | xrnemnf | |- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |
|
4 | 3 | biimpi | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A e. RR \/ A = +oo ) ) |
5 | 1 2 4 | syl2anc | |- ( A e. ( 0 [,] +oo ) -> ( A e. RR \/ A = +oo ) ) |
6 | 5 | orcanai | |- ( ( A e. ( 0 [,] +oo ) /\ -. A e. RR ) -> A = +oo ) |