Metamath Proof Explorer


Theorem xrge0nre

Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion xrge0nre
|- ( ( A e. ( 0 [,] +oo ) /\ -. A e. RR ) -> A = +oo )

Proof

Step Hyp Ref Expression
1 eliccxr
 |-  ( A e. ( 0 [,] +oo ) -> A e. RR* )
2 xrge0neqmnf
 |-  ( A e. ( 0 [,] +oo ) -> A =/= -oo )
3 xrnemnf
 |-  ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) )
4 3 biimpi
 |-  ( ( A e. RR* /\ A =/= -oo ) -> ( A e. RR \/ A = +oo ) )
5 1 2 4 syl2anc
 |-  ( A e. ( 0 [,] +oo ) -> ( A e. RR \/ A = +oo ) )
6 5 orcanai
 |-  ( ( A e. ( 0 [,] +oo ) /\ -. A e. RR ) -> A = +oo )