Metamath Proof Explorer


Theorem xrge0subm

Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1
|- R = ( RR*s |`s ( RR* \ { -oo } ) )
Assertion xrge0subm
|- ( 0 [,] +oo ) e. ( SubMnd ` R )

Proof

Step Hyp Ref Expression
1 xrs1mnd.1
 |-  R = ( RR*s |`s ( RR* \ { -oo } ) )
2 simpl
 |-  ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* )
3 ge0nemnf
 |-  ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo )
4 2 3 jca
 |-  ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) )
5 elxrge0
 |-  ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) )
6 eldifsn
 |-  ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) )
7 4 5 6 3imtr4i
 |-  ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) )
8 7 ssriv
 |-  ( 0 [,] +oo ) C_ ( RR* \ { -oo } )
9 0e0iccpnf
 |-  0 e. ( 0 [,] +oo )
10 ge0xaddcl
 |-  ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x +e y ) e. ( 0 [,] +oo ) )
11 10 rgen2
 |-  A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo )
12 1 xrs1mnd
 |-  R e. Mnd
13 difss
 |-  ( RR* \ { -oo } ) C_ RR*
14 xrsbas
 |-  RR* = ( Base ` RR*s )
15 1 14 ressbas2
 |-  ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) )
16 13 15 ax-mp
 |-  ( RR* \ { -oo } ) = ( Base ` R )
17 1 xrs10
 |-  0 = ( 0g ` R )
18 xrex
 |-  RR* e. _V
19 18 difexi
 |-  ( RR* \ { -oo } ) e. _V
20 xrsadd
 |-  +e = ( +g ` RR*s )
21 1 20 ressplusg
 |-  ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) )
22 19 21 ax-mp
 |-  +e = ( +g ` R )
23 16 17 22 issubm
 |-  ( R e. Mnd -> ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) ) )
24 12 23 ax-mp
 |-  ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) )
25 8 9 11 24 mpbir3an
 |-  ( 0 [,] +oo ) e. ( SubMnd ` R )