| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrs1mnd.1 |
|- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
| 2 |
|
simpl |
|- ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* ) |
| 3 |
|
ge0nemnf |
|- ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo ) |
| 4 |
2 3
|
jca |
|- ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) ) |
| 5 |
|
elxrge0 |
|- ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) ) |
| 6 |
|
eldifsn |
|- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
| 7 |
4 5 6
|
3imtr4i |
|- ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) |
| 8 |
7
|
ssriv |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 9 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
| 10 |
|
ge0xaddcl |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x +e y ) e. ( 0 [,] +oo ) ) |
| 11 |
10
|
rgen2 |
|- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) |
| 12 |
1
|
xrs1mnd |
|- R e. Mnd |
| 13 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
| 14 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 15 |
1 14
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 16 |
13 15
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` R ) |
| 17 |
1
|
xrs10 |
|- 0 = ( 0g ` R ) |
| 18 |
|
xrex |
|- RR* e. _V |
| 19 |
18
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
| 20 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 21 |
1 20
|
ressplusg |
|- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 22 |
19 21
|
ax-mp |
|- +e = ( +g ` R ) |
| 23 |
16 17 22
|
issubm |
|- ( R e. Mnd -> ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) ) ) |
| 24 |
12 23
|
ax-mp |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) ) |
| 25 |
8 9 11 24
|
mpbir3an |
|- ( 0 [,] +oo ) e. ( SubMnd ` R ) |