Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( x = y -> ( x = 0 <-> y = 0 ) ) |
2 |
|
fveq2 |
|- ( x = y -> ( log ` x ) = ( log ` y ) ) |
3 |
2
|
negeqd |
|- ( x = y -> -u ( log ` x ) = -u ( log ` y ) ) |
4 |
1 3
|
ifbieq2d |
|- ( x = y -> if ( x = 0 , +oo , -u ( log ` x ) ) = if ( y = 0 , +oo , -u ( log ` y ) ) ) |
5 |
4
|
cbvmptv |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) = ( y e. ( 0 [,] 1 ) |-> if ( y = 0 , +oo , -u ( log ` y ) ) ) |
6 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
7 |
5 6
|
xrge0iifmhm |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) e. ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) |
8 |
5 6
|
xrge0iifhmeo |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) e. ( II Homeo ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
9 |
|
cnfldex |
|- CCfld e. _V |
10 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
11 |
|
eqid |
|- ( CCfld |`s ( 0 [,] 1 ) ) = ( CCfld |`s ( 0 [,] 1 ) ) |
12 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
13 |
11 12
|
mgpress |
|- ( ( CCfld e. _V /\ ( 0 [,] 1 ) e. _V ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) ) |
14 |
9 10 13
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
15 |
11
|
dfii4 |
|- II = ( TopOpen ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
16 |
14 15
|
mgptopn |
|- II = ( TopOpen ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
17 |
16
|
oveq1i |
|- ( II Homeo ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) = ( ( TopOpen ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) Homeo ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
18 |
8 17
|
eleqtri |
|- ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) e. ( ( TopOpen ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) Homeo ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
19 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) |
20 |
19
|
iistmd |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. TopMnd |
21 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
22 |
7 18 20 21
|
mhmhmeotmd |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd |