| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrge0cmn | 
							 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd  | 
						
						
							| 2 | 
							
								
							 | 
							cmnmnd | 
							 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd  | 
						
						
							| 4 | 
							
								
							 | 
							xrge0tps | 
							 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp  | 
						
						
							| 5 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = x -> ( y = 0 <-> x = 0 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = x -> ( log ` y ) = ( log ` x ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							negeqd | 
							 |-  ( y = x -> -u ( log ` y ) = -u ( log ` x ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							ifbieq2d | 
							 |-  ( y = x -> if ( y = 0 , +oo , -u ( log ` y ) ) = if ( x = 0 , +oo , -u ( log ` x ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvmptv | 
							 |-  ( y e. ( 0 [,] 1 ) |-> if ( y = 0 , +oo , -u ( log ` y ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							xrge0pluscn | 
							 |-  ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. ( ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) tX ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							xrsbas | 
							 |-  RR* = ( Base ` RR*s )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )  | 
						
						
							| 15 | 
							
								
							 | 
							xrsadd | 
							 |-  +e = ( +g ` RR*s )  | 
						
						
							| 16 | 
							
								
							 | 
							xaddf | 
							 |-  +e : ( RR* X. RR* ) --> RR*  | 
						
						
							| 17 | 
							
								
							 | 
							ffn | 
							 |-  ( +e : ( RR* X. RR* ) --> RR* -> +e Fn ( RR* X. RR* ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							ax-mp | 
							 |-  +e Fn ( RR* X. RR* )  | 
						
						
							| 19 | 
							
								
							 | 
							iccssxr | 
							 |-  ( 0 [,] +oo ) C_ RR*  | 
						
						
							| 20 | 
							
								13 14 15 18 19
							 | 
							ressplusf | 
							 |-  ( +f ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomi | 
							 |-  ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( +f ` ( RR*s |`s ( 0 [,] +oo ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							xrge0base | 
							 |-  ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							ovex | 
							 |-  ( 0 [,] +oo ) e. _V  | 
						
						
							| 24 | 
							
								
							 | 
							xrstset | 
							 |-  ( ordTop ` <_ ) = ( TopSet ` RR*s )  | 
						
						
							| 25 | 
							
								14 24
							 | 
							resstset | 
							 |-  ( ( 0 [,] +oo ) e. _V -> ( ordTop ` <_ ) = ( TopSet ` ( RR*s |`s ( 0 [,] +oo ) ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							ax-mp | 
							 |-  ( ordTop ` <_ ) = ( TopSet ` ( RR*s |`s ( 0 [,] +oo ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							topnval | 
							 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							istmd | 
							 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd <-> ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp /\ ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. ( ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) tX ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) Cn ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) )  | 
						
						
							| 29 | 
							
								3 4 12 28
							 | 
							mpbir3an | 
							 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd  |