| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0tsms2.g |  |-  G = ( RR*s |`s ( 0 [,] +oo ) ) | 
						
							| 2 |  | simpl |  |-  ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> A e. V ) | 
						
							| 3 |  | simpr |  |-  ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> F : A --> ( 0 [,] +oo ) ) | 
						
							| 4 |  | eqid |  |-  sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) | 
						
							| 5 | 1 2 3 4 | xrge0tsms |  |-  ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) = { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) | 
						
							| 6 |  | xrltso |  |-  < Or RR* | 
						
							| 7 | 6 | supex |  |-  sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V | 
						
							| 8 | 7 | ensn1 |  |-  { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ~~ 1o | 
						
							| 9 | 5 8 | eqbrtrdi |  |-  ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |