Description: An extended real greater than or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrgepnfd.1 | |- ( ph -> A e. RR* ) |
|
xrgepnfd.2 | |- ( ph -> +oo <_ A ) |
||
Assertion | xrgepnfd | |- ( ph -> A = +oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrgepnfd.1 | |- ( ph -> A e. RR* ) |
|
2 | xrgepnfd.2 | |- ( ph -> +oo <_ A ) |
|
3 | pnfxr | |- +oo e. RR* |
|
4 | 3 | a1i | |- ( ph -> +oo e. RR* ) |
5 | pnfge | |- ( A e. RR* -> A <_ +oo ) |
|
6 | 1 5 | syl | |- ( ph -> A <_ +oo ) |
7 | 1 4 6 2 | xrletrid | |- ( ph -> A = +oo ) |