Metamath Proof Explorer


Theorem xrgepnfd

Description: An extended real greater than or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgepnfd.1
|- ( ph -> A e. RR* )
xrgepnfd.2
|- ( ph -> +oo <_ A )
Assertion xrgepnfd
|- ( ph -> A = +oo )

Proof

Step Hyp Ref Expression
1 xrgepnfd.1
 |-  ( ph -> A e. RR* )
2 xrgepnfd.2
 |-  ( ph -> +oo <_ A )
3 pnfxr
 |-  +oo e. RR*
4 3 a1i
 |-  ( ph -> +oo e. RR* )
5 pnfge
 |-  ( A e. RR* -> A <_ +oo )
6 1 5 syl
 |-  ( ph -> A <_ +oo )
7 1 4 6 2 xrletrid
 |-  ( ph -> A = +oo )