Metamath Proof Explorer


Theorem xrgtned

Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgtned.1
|- ( ph -> A e. RR* )
xrgtned.2
|- ( ph -> B e. RR* )
xrgtned.3
|- ( ph -> A < B )
Assertion xrgtned
|- ( ph -> B =/= A )

Proof

Step Hyp Ref Expression
1 xrgtned.1
 |-  ( ph -> A e. RR* )
2 xrgtned.2
 |-  ( ph -> B e. RR* )
3 xrgtned.3
 |-  ( ph -> A < B )
4 xrltne
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A )
5 1 2 3 4 syl3anc
 |-  ( ph -> B =/= A )