Step |
Hyp |
Ref |
Expression |
1 |
|
xrgtnelicc.1 |
|- ( ph -> A e. RR* ) |
2 |
|
xrgtnelicc.2 |
|- ( ph -> B e. RR* ) |
3 |
|
xrgtnelicc.3 |
|- ( ph -> C e. RR* ) |
4 |
|
xrgtnelicc.4 |
|- ( ph -> B < C ) |
5 |
|
xrltnle |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) ) |
6 |
2 3 5
|
syl2anc |
|- ( ph -> ( B < C <-> -. C <_ B ) ) |
7 |
4 6
|
mpbid |
|- ( ph -> -. C <_ B ) |
8 |
7
|
intnand |
|- ( ph -> -. ( A <_ C /\ C <_ B ) ) |
9 |
|
elicc4 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
10 |
1 2 3 9
|
syl3anc |
|- ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
11 |
8 10
|
mtbird |
|- ( ph -> -. C e. ( A [,] B ) ) |