Step |
Hyp |
Ref |
Expression |
1 |
|
xrhmeo.f |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
2 |
|
xrhmeo.g |
|- G = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
3 |
|
xrhmeo.j |
|- J = ( TopOpen ` CCfld ) |
4 |
|
iccssxr |
|- ( -u 1 [,] 1 ) C_ RR* |
5 |
|
xrltso |
|- < Or RR* |
6 |
|
soss |
|- ( ( -u 1 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( -u 1 [,] 1 ) ) ) |
7 |
4 5 6
|
mp2 |
|- < Or ( -u 1 [,] 1 ) |
8 |
|
sopo |
|- ( < Or RR* -> < Po RR* ) |
9 |
5 8
|
ax-mp |
|- < Po RR* |
10 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
11 |
|
neg1rr |
|- -u 1 e. RR |
12 |
|
1re |
|- 1 e. RR |
13 |
11 12
|
elicc2i |
|- ( y e. ( -u 1 [,] 1 ) <-> ( y e. RR /\ -u 1 <_ y /\ y <_ 1 ) ) |
14 |
13
|
simp1bi |
|- ( y e. ( -u 1 [,] 1 ) -> y e. RR ) |
15 |
14
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. RR ) |
16 |
|
simpr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> 0 <_ y ) |
17 |
13
|
simp3bi |
|- ( y e. ( -u 1 [,] 1 ) -> y <_ 1 ) |
18 |
17
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y <_ 1 ) |
19 |
|
elicc01 |
|- ( y e. ( 0 [,] 1 ) <-> ( y e. RR /\ 0 <_ y /\ y <_ 1 ) ) |
20 |
15 16 18 19
|
syl3anbrc |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. ( 0 [,] 1 ) ) |
21 |
1
|
iccpnfcnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( v e. ( 0 [,] +oo ) |-> if ( v = +oo , 1 , ( v / ( 1 + v ) ) ) ) ) |
22 |
21
|
simpli |
|- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
23 |
|
f1of |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) |
24 |
22 23
|
ax-mp |
|- F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) |
25 |
24
|
ffvelrni |
|- ( y e. ( 0 [,] 1 ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
26 |
20 25
|
syl |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
27 |
10 26
|
sselid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. RR* ) |
28 |
14
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y e. RR ) |
29 |
28
|
renegcld |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. RR ) |
30 |
|
0re |
|- 0 e. RR |
31 |
|
letric |
|- ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y \/ y <_ 0 ) ) |
32 |
30 14 31
|
sylancr |
|- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y \/ y <_ 0 ) ) |
33 |
32
|
orcanai |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y <_ 0 ) |
34 |
28
|
le0neg1d |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( y <_ 0 <-> 0 <_ -u y ) ) |
35 |
33 34
|
mpbid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> 0 <_ -u y ) |
36 |
13
|
simp2bi |
|- ( y e. ( -u 1 [,] 1 ) -> -u 1 <_ y ) |
37 |
36
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u 1 <_ y ) |
38 |
|
lenegcon1 |
|- ( ( 1 e. RR /\ y e. RR ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
39 |
12 28 38
|
sylancr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
40 |
37 39
|
mpbid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y <_ 1 ) |
41 |
|
elicc01 |
|- ( -u y e. ( 0 [,] 1 ) <-> ( -u y e. RR /\ 0 <_ -u y /\ -u y <_ 1 ) ) |
42 |
29 35 40 41
|
syl3anbrc |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. ( 0 [,] 1 ) ) |
43 |
24
|
ffvelrni |
|- ( -u y e. ( 0 [,] 1 ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
44 |
42 43
|
syl |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
45 |
10 44
|
sselid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. RR* ) |
46 |
45
|
xnegcld |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -e ( F ` -u y ) e. RR* ) |
47 |
27 46
|
ifclda |
|- ( y e. ( -u 1 [,] 1 ) -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) e. RR* ) |
48 |
2 47
|
fmpti |
|- G : ( -u 1 [,] 1 ) --> RR* |
49 |
|
frn |
|- ( G : ( -u 1 [,] 1 ) --> RR* -> ran G C_ RR* ) |
50 |
48 49
|
ax-mp |
|- ran G C_ RR* |
51 |
|
ssabral |
|- ( RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } <-> A. z e. RR* E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
52 |
|
0le1 |
|- 0 <_ 1 |
53 |
|
le0neg2 |
|- ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) |
54 |
12 53
|
ax-mp |
|- ( 0 <_ 1 <-> -u 1 <_ 0 ) |
55 |
52 54
|
mpbi |
|- -u 1 <_ 0 |
56 |
|
1le1 |
|- 1 <_ 1 |
57 |
|
iccss |
|- ( ( ( -u 1 e. RR /\ 1 e. RR ) /\ ( -u 1 <_ 0 /\ 1 <_ 1 ) ) -> ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) ) |
58 |
11 12 55 56 57
|
mp4an |
|- ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) |
59 |
|
elxrge0 |
|- ( z e. ( 0 [,] +oo ) <-> ( z e. RR* /\ 0 <_ z ) ) |
60 |
|
f1ocnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) ) |
61 |
|
f1of |
|- ( `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) -> `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) ) |
62 |
22 60 61
|
mp2b |
|- `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) |
63 |
62
|
ffvelrni |
|- ( z e. ( 0 [,] +oo ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
64 |
59 63
|
sylbir |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
65 |
58 64
|
sselid |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( -u 1 [,] 1 ) ) |
66 |
|
elicc01 |
|- ( ( `' F ` z ) e. ( 0 [,] 1 ) <-> ( ( `' F ` z ) e. RR /\ 0 <_ ( `' F ` z ) /\ ( `' F ` z ) <_ 1 ) ) |
67 |
66
|
simp2bi |
|- ( ( `' F ` z ) e. ( 0 [,] 1 ) -> 0 <_ ( `' F ` z ) ) |
68 |
64 67
|
syl |
|- ( ( z e. RR* /\ 0 <_ z ) -> 0 <_ ( `' F ` z ) ) |
69 |
59
|
biimpri |
|- ( ( z e. RR* /\ 0 <_ z ) -> z e. ( 0 [,] +oo ) ) |
70 |
|
f1ocnvfv2 |
|- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` z ) ) = z ) |
71 |
22 69 70
|
sylancr |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( F ` ( `' F ` z ) ) = z ) |
72 |
71
|
eqcomd |
|- ( ( z e. RR* /\ 0 <_ z ) -> z = ( F ` ( `' F ` z ) ) ) |
73 |
|
breq2 |
|- ( y = ( `' F ` z ) -> ( 0 <_ y <-> 0 <_ ( `' F ` z ) ) ) |
74 |
|
fveq2 |
|- ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) |
75 |
74
|
eqeq2d |
|- ( y = ( `' F ` z ) -> ( z = ( F ` y ) <-> z = ( F ` ( `' F ` z ) ) ) ) |
76 |
73 75
|
anbi12d |
|- ( y = ( `' F ` z ) -> ( ( 0 <_ y /\ z = ( F ` y ) ) <-> ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) ) |
77 |
76
|
rspcev |
|- ( ( ( `' F ` z ) e. ( -u 1 [,] 1 ) /\ ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
78 |
65 68 72 77
|
syl12anc |
|- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
79 |
|
iftrue |
|- ( 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = ( F ` y ) ) |
80 |
79
|
eqeq2d |
|- ( 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = ( F ` y ) ) ) |
81 |
80
|
biimpar |
|- ( ( 0 <_ y /\ z = ( F ` y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
82 |
81
|
reximi |
|- ( E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
83 |
78 82
|
syl |
|- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
84 |
|
xnegcl |
|- ( z e. RR* -> -e z e. RR* ) |
85 |
84
|
adantr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. RR* ) |
86 |
|
0xr |
|- 0 e. RR* |
87 |
|
xrletri |
|- ( ( 0 e. RR* /\ z e. RR* ) -> ( 0 <_ z \/ z <_ 0 ) ) |
88 |
86 87
|
mpan |
|- ( z e. RR* -> ( 0 <_ z \/ z <_ 0 ) ) |
89 |
88
|
ord |
|- ( z e. RR* -> ( -. 0 <_ z -> z <_ 0 ) ) |
90 |
|
xle0neg1 |
|- ( z e. RR* -> ( z <_ 0 <-> 0 <_ -e z ) ) |
91 |
89 90
|
sylibd |
|- ( z e. RR* -> ( -. 0 <_ z -> 0 <_ -e z ) ) |
92 |
91
|
imp |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> 0 <_ -e z ) |
93 |
|
elxrge0 |
|- ( -e z e. ( 0 [,] +oo ) <-> ( -e z e. RR* /\ 0 <_ -e z ) ) |
94 |
85 92 93
|
sylanbrc |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. ( 0 [,] +oo ) ) |
95 |
62
|
ffvelrni |
|- ( -e z e. ( 0 [,] +oo ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
96 |
94 95
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
97 |
58 96
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
98 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
99 |
11 12 98
|
mp2an |
|- ( -u 1 [,] 1 ) C_ RR |
100 |
99 97
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
101 |
|
iccneg |
|- ( ( -u 1 e. RR /\ 1 e. RR /\ ( `' F ` -e z ) e. RR ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
102 |
11 12 101
|
mp3an12 |
|- ( ( `' F ` -e z ) e. RR -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
103 |
100 102
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
104 |
97 103
|
mpbid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) |
105 |
|
negneg1e1 |
|- -u -u 1 = 1 |
106 |
105
|
oveq2i |
|- ( -u 1 [,] -u -u 1 ) = ( -u 1 [,] 1 ) |
107 |
104 106
|
eleqtrdi |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
108 |
|
xle0neg2 |
|- ( z e. RR* -> ( 0 <_ z <-> -e z <_ 0 ) ) |
109 |
108
|
notbid |
|- ( z e. RR* -> ( -. 0 <_ z <-> -. -e z <_ 0 ) ) |
110 |
109
|
biimpa |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. -e z <_ 0 ) |
111 |
|
f1ocnvfv2 |
|- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ -e z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
112 |
22 94 111
|
sylancr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
113 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
114 |
|
ax-1ne0 |
|- 1 =/= 0 |
115 |
|
neeq2 |
|- ( x = 0 -> ( 1 =/= x <-> 1 =/= 0 ) ) |
116 |
114 115
|
mpbiri |
|- ( x = 0 -> 1 =/= x ) |
117 |
116
|
necomd |
|- ( x = 0 -> x =/= 1 ) |
118 |
|
ifnefalse |
|- ( x =/= 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
119 |
117 118
|
syl |
|- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
120 |
|
id |
|- ( x = 0 -> x = 0 ) |
121 |
|
oveq2 |
|- ( x = 0 -> ( 1 - x ) = ( 1 - 0 ) ) |
122 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
123 |
121 122
|
eqtrdi |
|- ( x = 0 -> ( 1 - x ) = 1 ) |
124 |
120 123
|
oveq12d |
|- ( x = 0 -> ( x / ( 1 - x ) ) = ( 0 / 1 ) ) |
125 |
|
ax-1cn |
|- 1 e. CC |
126 |
125 114
|
div0i |
|- ( 0 / 1 ) = 0 |
127 |
124 126
|
eqtrdi |
|- ( x = 0 -> ( x / ( 1 - x ) ) = 0 ) |
128 |
119 127
|
eqtrd |
|- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = 0 ) |
129 |
|
c0ex |
|- 0 e. _V |
130 |
128 1 129
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = 0 ) |
131 |
113 130
|
ax-mp |
|- ( F ` 0 ) = 0 |
132 |
131
|
a1i |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` 0 ) = 0 ) |
133 |
112 132
|
breq12d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) <-> -e z <_ 0 ) ) |
134 |
110 133
|
mtbird |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) |
135 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
136 |
1 135
|
iccpnfhmeo |
|- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
137 |
136
|
simpli |
|- F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
138 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
139 |
138 10
|
pm3.2i |
|- ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) |
140 |
|
leisorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) /\ ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
141 |
137 139 140
|
mp3an12 |
|- ( ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
142 |
96 113 141
|
sylancl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
143 |
134 142
|
mtbird |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( `' F ` -e z ) <_ 0 ) |
144 |
100
|
le0neg1d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> 0 <_ -u ( `' F ` -e z ) ) ) |
145 |
143 144
|
mtbid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. 0 <_ -u ( `' F ` -e z ) ) |
146 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
147 |
146 96
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
148 |
147
|
recnd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. CC ) |
149 |
148
|
negnegd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u -u ( `' F ` -e z ) = ( `' F ` -e z ) ) |
150 |
149
|
fveq2d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = ( F ` ( `' F ` -e z ) ) ) |
151 |
150 112
|
eqtrd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = -e z ) |
152 |
|
xnegeq |
|- ( ( F ` -u -u ( `' F ` -e z ) ) = -e z -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
153 |
151 152
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
154 |
|
xnegneg |
|- ( z e. RR* -> -e -e z = z ) |
155 |
154
|
adantr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e -e z = z ) |
156 |
153 155
|
eqtr2d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
157 |
|
breq2 |
|- ( y = -u ( `' F ` -e z ) -> ( 0 <_ y <-> 0 <_ -u ( `' F ` -e z ) ) ) |
158 |
157
|
notbid |
|- ( y = -u ( `' F ` -e z ) -> ( -. 0 <_ y <-> -. 0 <_ -u ( `' F ` -e z ) ) ) |
159 |
|
negeq |
|- ( y = -u ( `' F ` -e z ) -> -u y = -u -u ( `' F ` -e z ) ) |
160 |
159
|
fveq2d |
|- ( y = -u ( `' F ` -e z ) -> ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) ) |
161 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
162 |
160 161
|
syl |
|- ( y = -u ( `' F ` -e z ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
163 |
162
|
eqeq2d |
|- ( y = -u ( `' F ` -e z ) -> ( z = -e ( F ` -u y ) <-> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) |
164 |
158 163
|
anbi12d |
|- ( y = -u ( `' F ` -e z ) -> ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) <-> ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) ) |
165 |
164
|
rspcev |
|- ( ( -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) /\ ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
166 |
107 145 156 165
|
syl12anc |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
167 |
|
iffalse |
|- ( -. 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = -e ( F ` -u y ) ) |
168 |
167
|
eqeq2d |
|- ( -. 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = -e ( F ` -u y ) ) ) |
169 |
168
|
biimpar |
|- ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
170 |
169
|
reximi |
|- ( E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
171 |
166 170
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
172 |
83 171
|
pm2.61dan |
|- ( z e. RR* -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
173 |
51 172
|
mprgbir |
|- RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
174 |
2
|
rnmpt |
|- ran G = { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
175 |
173 174
|
sseqtrri |
|- RR* C_ ran G |
176 |
50 175
|
eqssi |
|- ran G = RR* |
177 |
|
dffo2 |
|- ( G : ( -u 1 [,] 1 ) -onto-> RR* <-> ( G : ( -u 1 [,] 1 ) --> RR* /\ ran G = RR* ) ) |
178 |
48 176 177
|
mpbir2an |
|- G : ( -u 1 [,] 1 ) -onto-> RR* |
179 |
|
breq1 |
|- ( ( F ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
180 |
|
breq1 |
|- ( -e ( F ` -u z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
181 |
|
simpl3 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z < w ) |
182 |
|
simpl1 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
183 |
|
simpr |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ z ) |
184 |
|
breq2 |
|- ( y = z -> ( 0 <_ y <-> 0 <_ z ) ) |
185 |
|
eleq1w |
|- ( y = z -> ( y e. ( 0 [,] 1 ) <-> z e. ( 0 [,] 1 ) ) ) |
186 |
184 185
|
imbi12d |
|- ( y = z -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) ) |
187 |
20
|
ex |
|- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y -> y e. ( 0 [,] 1 ) ) ) |
188 |
186 187
|
vtoclga |
|- ( z e. ( -u 1 [,] 1 ) -> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) |
189 |
182 183 188
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( 0 [,] 1 ) ) |
190 |
|
simpl2 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( -u 1 [,] 1 ) ) |
191 |
30
|
a1i |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 e. RR ) |
192 |
99 182
|
sselid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. RR ) |
193 |
99 190
|
sselid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. RR ) |
194 |
192 193 181
|
ltled |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z <_ w ) |
195 |
191 192 193 183 194
|
letrd |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ w ) |
196 |
|
breq2 |
|- ( y = w -> ( 0 <_ y <-> 0 <_ w ) ) |
197 |
|
eleq1w |
|- ( y = w -> ( y e. ( 0 [,] 1 ) <-> w e. ( 0 [,] 1 ) ) ) |
198 |
196 197
|
imbi12d |
|- ( y = w -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) ) |
199 |
198 187
|
vtoclga |
|- ( w e. ( -u 1 [,] 1 ) -> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) |
200 |
190 195 199
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( 0 [,] 1 ) ) |
201 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
202 |
137 201
|
mpan |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
203 |
189 200 202
|
syl2anc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
204 |
181 203
|
mpbid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < ( F ` w ) ) |
205 |
195
|
iftrued |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) = ( F ` w ) ) |
206 |
204 205
|
breqtrrd |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
207 |
|
breq2 |
|- ( ( F ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < ( F ` w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
208 |
|
breq2 |
|- ( -e ( F ` -u w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < -e ( F ` -u w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
209 |
|
simpl1 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
210 |
|
simpr |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -. 0 <_ z ) |
211 |
184
|
notbid |
|- ( y = z -> ( -. 0 <_ y <-> -. 0 <_ z ) ) |
212 |
|
negeq |
|- ( y = z -> -u y = -u z ) |
213 |
212
|
eleq1d |
|- ( y = z -> ( -u y e. ( 0 [,] 1 ) <-> -u z e. ( 0 [,] 1 ) ) ) |
214 |
211 213
|
imbi12d |
|- ( y = z -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) ) |
215 |
42
|
ex |
|- ( y e. ( -u 1 [,] 1 ) -> ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) ) |
216 |
214 215
|
vtoclga |
|- ( z e. ( -u 1 [,] 1 ) -> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) |
217 |
209 210 216
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -u z e. ( 0 [,] 1 ) ) |
218 |
217
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
219 |
24
|
ffvelrni |
|- ( -u z e. ( 0 [,] 1 ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
220 |
218 219
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
221 |
10 220
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
222 |
221
|
xnegcld |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) e. RR* ) |
223 |
86
|
a1i |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 e. RR* ) |
224 |
|
simpll2 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
225 |
|
simpr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ w ) |
226 |
224 225 199
|
sylc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( 0 [,] 1 ) ) |
227 |
24
|
ffvelrni |
|- ( w e. ( 0 [,] 1 ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
228 |
226 227
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
229 |
10 228
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. RR* ) |
230 |
210
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -. 0 <_ z ) |
231 |
|
simpll1 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
232 |
99 231
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. RR ) |
233 |
|
ltnle |
|- ( ( z e. RR /\ 0 e. RR ) -> ( z < 0 <-> -. 0 <_ z ) ) |
234 |
232 30 233
|
sylancl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> -. 0 <_ z ) ) |
235 |
230 234
|
mpbird |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z < 0 ) |
236 |
232
|
lt0neg1d |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> 0 < -u z ) ) |
237 |
235 236
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < -u z ) |
238 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
239 |
137 238
|
mpan |
|- ( ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
240 |
113 218 239
|
sylancr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
241 |
237 240
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` 0 ) < ( F ` -u z ) ) |
242 |
131 241
|
eqbrtrrid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < ( F ` -u z ) ) |
243 |
|
xlt0neg2 |
|- ( ( F ` -u z ) e. RR* -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
244 |
221 243
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
245 |
242 244
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < 0 ) |
246 |
|
elxrge0 |
|- ( ( F ` w ) e. ( 0 [,] +oo ) <-> ( ( F ` w ) e. RR* /\ 0 <_ ( F ` w ) ) ) |
247 |
246
|
simprbi |
|- ( ( F ` w ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` w ) ) |
248 |
228 247
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ ( F ` w ) ) |
249 |
222 223 229 245 248
|
xrltletrd |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < ( F ` w ) ) |
250 |
|
simpll3 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z < w ) |
251 |
|
simpll1 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
252 |
99 251
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. RR ) |
253 |
|
simpll2 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
254 |
99 253
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. RR ) |
255 |
252 254
|
ltnegd |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( z < w <-> -u w < -u z ) ) |
256 |
250 255
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w < -u z ) |
257 |
|
simpr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -. 0 <_ w ) |
258 |
196
|
notbid |
|- ( y = w -> ( -. 0 <_ y <-> -. 0 <_ w ) ) |
259 |
|
negeq |
|- ( y = w -> -u y = -u w ) |
260 |
259
|
eleq1d |
|- ( y = w -> ( -u y e. ( 0 [,] 1 ) <-> -u w e. ( 0 [,] 1 ) ) ) |
261 |
258 260
|
imbi12d |
|- ( y = w -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) ) |
262 |
261 215
|
vtoclga |
|- ( w e. ( -u 1 [,] 1 ) -> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) |
263 |
253 257 262
|
sylc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w e. ( 0 [,] 1 ) ) |
264 |
217
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
265 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
266 |
137 265
|
mpan |
|- ( ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
267 |
263 264 266
|
syl2anc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
268 |
256 267
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) < ( F ` -u z ) ) |
269 |
24
|
ffvelrni |
|- ( -u w e. ( 0 [,] 1 ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
270 |
263 269
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
271 |
10 270
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. RR* ) |
272 |
264 219
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
273 |
10 272
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
274 |
|
xltneg |
|- ( ( ( F ` -u w ) e. RR* /\ ( F ` -u z ) e. RR* ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
275 |
271 273 274
|
syl2anc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
276 |
268 275
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -e ( F ` -u z ) < -e ( F ` -u w ) ) |
277 |
207 208 249 276
|
ifbothda |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
278 |
179 180 206 277
|
ifbothda |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
279 |
278
|
3expia |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
280 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
281 |
212
|
fveq2d |
|- ( y = z -> ( F ` -u y ) = ( F ` -u z ) ) |
282 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u z ) -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
283 |
281 282
|
syl |
|- ( y = z -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
284 |
184 280 283
|
ifbieq12d |
|- ( y = z -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
285 |
|
fvex |
|- ( F ` z ) e. _V |
286 |
|
xnegex |
|- -e ( F ` -u z ) e. _V |
287 |
285 286
|
ifex |
|- if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) e. _V |
288 |
284 2 287
|
fvmpt |
|- ( z e. ( -u 1 [,] 1 ) -> ( G ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
289 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
290 |
259
|
fveq2d |
|- ( y = w -> ( F ` -u y ) = ( F ` -u w ) ) |
291 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u w ) -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
292 |
290 291
|
syl |
|- ( y = w -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
293 |
196 289 292
|
ifbieq12d |
|- ( y = w -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
294 |
|
fvex |
|- ( F ` w ) e. _V |
295 |
|
xnegex |
|- -e ( F ` -u w ) e. _V |
296 |
294 295
|
ifex |
|- if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) e. _V |
297 |
293 2 296
|
fvmpt |
|- ( w e. ( -u 1 [,] 1 ) -> ( G ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
298 |
288 297
|
breqan12d |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( ( G ` z ) < ( G ` w ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
299 |
279 298
|
sylibrd |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> ( G ` z ) < ( G ` w ) ) ) |
300 |
299
|
rgen2 |
|- A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) |
301 |
|
soisoi |
|- ( ( ( < Or ( -u 1 [,] 1 ) /\ < Po RR* ) /\ ( G : ( -u 1 [,] 1 ) -onto-> RR* /\ A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) ) ) -> G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) ) |
302 |
7 9 178 300 301
|
mp4an |
|- G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) |
303 |
|
letsr |
|- <_ e. TosetRel |
304 |
303
|
elexi |
|- <_ e. _V |
305 |
304
|
inex1 |
|- ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V |
306 |
|
ssid |
|- RR* C_ RR* |
307 |
|
leiso |
|- ( ( ( -u 1 [,] 1 ) C_ RR* /\ RR* C_ RR* ) -> ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) ) |
308 |
4 306 307
|
mp2an |
|- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
309 |
302 308
|
mpbi |
|- G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) |
310 |
|
isores1 |
|- ( G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
311 |
309 310
|
mpbi |
|- G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) |
312 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
313 |
303 312
|
ax-mp |
|- <_ e. PosetRel |
314 |
|
ledm |
|- RR* = dom <_ |
315 |
314
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( -u 1 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) ) |
316 |
313 4 315
|
mp2an |
|- dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) |
317 |
316
|
eqcomi |
|- ( -u 1 [,] 1 ) = dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) |
318 |
317 314
|
ordthmeo |
|- ( ( ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V /\ <_ e. TosetRel /\ G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) -> G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) ) |
319 |
305 303 311 318
|
mp3an |
|- G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
320 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
321 |
3 320
|
xrrest2 |
|- ( ( -u 1 [,] 1 ) C_ RR -> ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) ) |
322 |
99 321
|
ax-mp |
|- ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) |
323 |
|
ordtresticc |
|- ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
324 |
322 323
|
eqtri |
|- ( J |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
325 |
324
|
oveq1i |
|- ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) = ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
326 |
319 325
|
eleqtrri |
|- G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) |
327 |
302 326
|
pm3.2i |
|- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |