| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrhmeo.f |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
| 2 |
|
xrhmeo.g |
|- G = ( y e. ( -u 1 [,] 1 ) |-> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 3 |
|
xrhmeo.j |
|- J = ( TopOpen ` CCfld ) |
| 4 |
|
iccssxr |
|- ( -u 1 [,] 1 ) C_ RR* |
| 5 |
|
xrltso |
|- < Or RR* |
| 6 |
|
soss |
|- ( ( -u 1 [,] 1 ) C_ RR* -> ( < Or RR* -> < Or ( -u 1 [,] 1 ) ) ) |
| 7 |
4 5 6
|
mp2 |
|- < Or ( -u 1 [,] 1 ) |
| 8 |
|
sopo |
|- ( < Or RR* -> < Po RR* ) |
| 9 |
5 8
|
ax-mp |
|- < Po RR* |
| 10 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 11 |
|
neg1rr |
|- -u 1 e. RR |
| 12 |
|
1re |
|- 1 e. RR |
| 13 |
11 12
|
elicc2i |
|- ( y e. ( -u 1 [,] 1 ) <-> ( y e. RR /\ -u 1 <_ y /\ y <_ 1 ) ) |
| 14 |
13
|
simp1bi |
|- ( y e. ( -u 1 [,] 1 ) -> y e. RR ) |
| 15 |
14
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. RR ) |
| 16 |
|
simpr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> 0 <_ y ) |
| 17 |
13
|
simp3bi |
|- ( y e. ( -u 1 [,] 1 ) -> y <_ 1 ) |
| 18 |
17
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y <_ 1 ) |
| 19 |
|
elicc01 |
|- ( y e. ( 0 [,] 1 ) <-> ( y e. RR /\ 0 <_ y /\ y <_ 1 ) ) |
| 20 |
15 16 18 19
|
syl3anbrc |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> y e. ( 0 [,] 1 ) ) |
| 21 |
1
|
iccpnfcnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( v e. ( 0 [,] +oo ) |-> if ( v = +oo , 1 , ( v / ( 1 + v ) ) ) ) ) |
| 22 |
21
|
simpli |
|- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
| 23 |
|
f1of |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) |
| 24 |
22 23
|
ax-mp |
|- F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) |
| 25 |
24
|
ffvelcdmi |
|- ( y e. ( 0 [,] 1 ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 26 |
20 25
|
syl |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 27 |
10 26
|
sselid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ 0 <_ y ) -> ( F ` y ) e. RR* ) |
| 28 |
14
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y e. RR ) |
| 29 |
28
|
renegcld |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. RR ) |
| 30 |
|
0re |
|- 0 e. RR |
| 31 |
|
letric |
|- ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y \/ y <_ 0 ) ) |
| 32 |
30 14 31
|
sylancr |
|- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y \/ y <_ 0 ) ) |
| 33 |
32
|
orcanai |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> y <_ 0 ) |
| 34 |
28
|
le0neg1d |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( y <_ 0 <-> 0 <_ -u y ) ) |
| 35 |
33 34
|
mpbid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> 0 <_ -u y ) |
| 36 |
13
|
simp2bi |
|- ( y e. ( -u 1 [,] 1 ) -> -u 1 <_ y ) |
| 37 |
36
|
adantr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u 1 <_ y ) |
| 38 |
|
lenegcon1 |
|- ( ( 1 e. RR /\ y e. RR ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
| 39 |
12 28 38
|
sylancr |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( -u 1 <_ y <-> -u y <_ 1 ) ) |
| 40 |
37 39
|
mpbid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y <_ 1 ) |
| 41 |
|
elicc01 |
|- ( -u y e. ( 0 [,] 1 ) <-> ( -u y e. RR /\ 0 <_ -u y /\ -u y <_ 1 ) ) |
| 42 |
29 35 40 41
|
syl3anbrc |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -u y e. ( 0 [,] 1 ) ) |
| 43 |
24
|
ffvelcdmi |
|- ( -u y e. ( 0 [,] 1 ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
| 44 |
42 43
|
syl |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. ( 0 [,] +oo ) ) |
| 45 |
10 44
|
sselid |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> ( F ` -u y ) e. RR* ) |
| 46 |
45
|
xnegcld |
|- ( ( y e. ( -u 1 [,] 1 ) /\ -. 0 <_ y ) -> -e ( F ` -u y ) e. RR* ) |
| 47 |
27 46
|
ifclda |
|- ( y e. ( -u 1 [,] 1 ) -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) e. RR* ) |
| 48 |
2 47
|
fmpti |
|- G : ( -u 1 [,] 1 ) --> RR* |
| 49 |
|
frn |
|- ( G : ( -u 1 [,] 1 ) --> RR* -> ran G C_ RR* ) |
| 50 |
48 49
|
ax-mp |
|- ran G C_ RR* |
| 51 |
|
ssabral |
|- ( RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } <-> A. z e. RR* E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 52 |
|
0le1 |
|- 0 <_ 1 |
| 53 |
|
le0neg2 |
|- ( 1 e. RR -> ( 0 <_ 1 <-> -u 1 <_ 0 ) ) |
| 54 |
12 53
|
ax-mp |
|- ( 0 <_ 1 <-> -u 1 <_ 0 ) |
| 55 |
52 54
|
mpbi |
|- -u 1 <_ 0 |
| 56 |
|
1le1 |
|- 1 <_ 1 |
| 57 |
|
iccss |
|- ( ( ( -u 1 e. RR /\ 1 e. RR ) /\ ( -u 1 <_ 0 /\ 1 <_ 1 ) ) -> ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) ) |
| 58 |
11 12 55 56 57
|
mp4an |
|- ( 0 [,] 1 ) C_ ( -u 1 [,] 1 ) |
| 59 |
|
elxrge0 |
|- ( z e. ( 0 [,] +oo ) <-> ( z e. RR* /\ 0 <_ z ) ) |
| 60 |
|
f1ocnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) ) |
| 61 |
|
f1of |
|- ( `' F : ( 0 [,] +oo ) -1-1-onto-> ( 0 [,] 1 ) -> `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) ) |
| 62 |
22 60 61
|
mp2b |
|- `' F : ( 0 [,] +oo ) --> ( 0 [,] 1 ) |
| 63 |
62
|
ffvelcdmi |
|- ( z e. ( 0 [,] +oo ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
| 64 |
59 63
|
sylbir |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( 0 [,] 1 ) ) |
| 65 |
58 64
|
sselid |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( `' F ` z ) e. ( -u 1 [,] 1 ) ) |
| 66 |
|
elicc01 |
|- ( ( `' F ` z ) e. ( 0 [,] 1 ) <-> ( ( `' F ` z ) e. RR /\ 0 <_ ( `' F ` z ) /\ ( `' F ` z ) <_ 1 ) ) |
| 67 |
66
|
simp2bi |
|- ( ( `' F ` z ) e. ( 0 [,] 1 ) -> 0 <_ ( `' F ` z ) ) |
| 68 |
64 67
|
syl |
|- ( ( z e. RR* /\ 0 <_ z ) -> 0 <_ ( `' F ` z ) ) |
| 69 |
59
|
biimpri |
|- ( ( z e. RR* /\ 0 <_ z ) -> z e. ( 0 [,] +oo ) ) |
| 70 |
|
f1ocnvfv2 |
|- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` z ) ) = z ) |
| 71 |
22 69 70
|
sylancr |
|- ( ( z e. RR* /\ 0 <_ z ) -> ( F ` ( `' F ` z ) ) = z ) |
| 72 |
71
|
eqcomd |
|- ( ( z e. RR* /\ 0 <_ z ) -> z = ( F ` ( `' F ` z ) ) ) |
| 73 |
|
breq2 |
|- ( y = ( `' F ` z ) -> ( 0 <_ y <-> 0 <_ ( `' F ` z ) ) ) |
| 74 |
|
fveq2 |
|- ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) |
| 75 |
74
|
eqeq2d |
|- ( y = ( `' F ` z ) -> ( z = ( F ` y ) <-> z = ( F ` ( `' F ` z ) ) ) ) |
| 76 |
73 75
|
anbi12d |
|- ( y = ( `' F ` z ) -> ( ( 0 <_ y /\ z = ( F ` y ) ) <-> ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) ) |
| 77 |
76
|
rspcev |
|- ( ( ( `' F ` z ) e. ( -u 1 [,] 1 ) /\ ( 0 <_ ( `' F ` z ) /\ z = ( F ` ( `' F ` z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
| 78 |
65 68 72 77
|
syl12anc |
|- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) ) |
| 79 |
|
iftrue |
|- ( 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = ( F ` y ) ) |
| 80 |
79
|
eqeq2d |
|- ( 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = ( F ` y ) ) ) |
| 81 |
80
|
biimpar |
|- ( ( 0 <_ y /\ z = ( F ` y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 82 |
81
|
reximi |
|- ( E. y e. ( -u 1 [,] 1 ) ( 0 <_ y /\ z = ( F ` y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 83 |
78 82
|
syl |
|- ( ( z e. RR* /\ 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 84 |
|
xnegcl |
|- ( z e. RR* -> -e z e. RR* ) |
| 85 |
84
|
adantr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. RR* ) |
| 86 |
|
0xr |
|- 0 e. RR* |
| 87 |
|
xrletri |
|- ( ( 0 e. RR* /\ z e. RR* ) -> ( 0 <_ z \/ z <_ 0 ) ) |
| 88 |
86 87
|
mpan |
|- ( z e. RR* -> ( 0 <_ z \/ z <_ 0 ) ) |
| 89 |
88
|
ord |
|- ( z e. RR* -> ( -. 0 <_ z -> z <_ 0 ) ) |
| 90 |
|
xle0neg1 |
|- ( z e. RR* -> ( z <_ 0 <-> 0 <_ -e z ) ) |
| 91 |
89 90
|
sylibd |
|- ( z e. RR* -> ( -. 0 <_ z -> 0 <_ -e z ) ) |
| 92 |
91
|
imp |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> 0 <_ -e z ) |
| 93 |
|
elxrge0 |
|- ( -e z e. ( 0 [,] +oo ) <-> ( -e z e. RR* /\ 0 <_ -e z ) ) |
| 94 |
85 92 93
|
sylanbrc |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e z e. ( 0 [,] +oo ) ) |
| 95 |
62
|
ffvelcdmi |
|- ( -e z e. ( 0 [,] +oo ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
| 96 |
94 95
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( 0 [,] 1 ) ) |
| 97 |
58 96
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
| 98 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
| 99 |
11 12 98
|
mp2an |
|- ( -u 1 [,] 1 ) C_ RR |
| 100 |
99 97
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
| 101 |
|
iccneg |
|- ( ( -u 1 e. RR /\ 1 e. RR /\ ( `' F ` -e z ) e. RR ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
| 102 |
11 12 101
|
mp3an12 |
|- ( ( `' F ` -e z ) e. RR -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
| 103 |
100 102
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) e. ( -u 1 [,] 1 ) <-> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) ) |
| 104 |
97 103
|
mpbid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] -u -u 1 ) ) |
| 105 |
|
negneg1e1 |
|- -u -u 1 = 1 |
| 106 |
105
|
oveq2i |
|- ( -u 1 [,] -u -u 1 ) = ( -u 1 [,] 1 ) |
| 107 |
104 106
|
eleqtrdi |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) ) |
| 108 |
|
xle0neg2 |
|- ( z e. RR* -> ( 0 <_ z <-> -e z <_ 0 ) ) |
| 109 |
108
|
notbid |
|- ( z e. RR* -> ( -. 0 <_ z <-> -. -e z <_ 0 ) ) |
| 110 |
109
|
biimpa |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. -e z <_ 0 ) |
| 111 |
|
f1ocnvfv2 |
|- ( ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ -e z e. ( 0 [,] +oo ) ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
| 112 |
22 94 111
|
sylancr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` ( `' F ` -e z ) ) = -e z ) |
| 113 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 114 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 115 |
|
neeq2 |
|- ( x = 0 -> ( 1 =/= x <-> 1 =/= 0 ) ) |
| 116 |
114 115
|
mpbiri |
|- ( x = 0 -> 1 =/= x ) |
| 117 |
116
|
necomd |
|- ( x = 0 -> x =/= 1 ) |
| 118 |
|
ifnefalse |
|- ( x =/= 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
| 119 |
117 118
|
syl |
|- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
| 120 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 121 |
|
oveq2 |
|- ( x = 0 -> ( 1 - x ) = ( 1 - 0 ) ) |
| 122 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 123 |
121 122
|
eqtrdi |
|- ( x = 0 -> ( 1 - x ) = 1 ) |
| 124 |
120 123
|
oveq12d |
|- ( x = 0 -> ( x / ( 1 - x ) ) = ( 0 / 1 ) ) |
| 125 |
|
ax-1cn |
|- 1 e. CC |
| 126 |
125 114
|
div0i |
|- ( 0 / 1 ) = 0 |
| 127 |
124 126
|
eqtrdi |
|- ( x = 0 -> ( x / ( 1 - x ) ) = 0 ) |
| 128 |
119 127
|
eqtrd |
|- ( x = 0 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = 0 ) |
| 129 |
|
c0ex |
|- 0 e. _V |
| 130 |
128 1 129
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = 0 ) |
| 131 |
113 130
|
ax-mp |
|- ( F ` 0 ) = 0 |
| 132 |
131
|
a1i |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` 0 ) = 0 ) |
| 133 |
112 132
|
breq12d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) <-> -e z <_ 0 ) ) |
| 134 |
110 133
|
mtbird |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) |
| 135 |
|
eqid |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 136 |
1 135
|
iccpnfhmeo |
|- ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ F e. ( II Homeo ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) ) |
| 137 |
136
|
simpli |
|- F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 138 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
| 139 |
138 10
|
pm3.2i |
|- ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) |
| 140 |
|
leisorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) /\ ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
| 141 |
137 139 140
|
mp3an12 |
|- ( ( ( `' F ` -e z ) e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
| 142 |
96 113 141
|
sylancl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> ( F ` ( `' F ` -e z ) ) <_ ( F ` 0 ) ) ) |
| 143 |
134 142
|
mtbird |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. ( `' F ` -e z ) <_ 0 ) |
| 144 |
100
|
le0neg1d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( ( `' F ` -e z ) <_ 0 <-> 0 <_ -u ( `' F ` -e z ) ) ) |
| 145 |
143 144
|
mtbid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -. 0 <_ -u ( `' F ` -e z ) ) |
| 146 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 147 |
146 96
|
sselid |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. RR ) |
| 148 |
147
|
recnd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( `' F ` -e z ) e. CC ) |
| 149 |
148
|
negnegd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -u -u ( `' F ` -e z ) = ( `' F ` -e z ) ) |
| 150 |
149
|
fveq2d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = ( F ` ( `' F ` -e z ) ) ) |
| 151 |
150 112
|
eqtrd |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> ( F ` -u -u ( `' F ` -e z ) ) = -e z ) |
| 152 |
|
xnegeq |
|- ( ( F ` -u -u ( `' F ` -e z ) ) = -e z -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
| 153 |
151 152
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e ( F ` -u -u ( `' F ` -e z ) ) = -e -e z ) |
| 154 |
|
xnegneg |
|- ( z e. RR* -> -e -e z = z ) |
| 155 |
154
|
adantr |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> -e -e z = z ) |
| 156 |
153 155
|
eqtr2d |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
| 157 |
|
breq2 |
|- ( y = -u ( `' F ` -e z ) -> ( 0 <_ y <-> 0 <_ -u ( `' F ` -e z ) ) ) |
| 158 |
157
|
notbid |
|- ( y = -u ( `' F ` -e z ) -> ( -. 0 <_ y <-> -. 0 <_ -u ( `' F ` -e z ) ) ) |
| 159 |
|
negeq |
|- ( y = -u ( `' F ` -e z ) -> -u y = -u -u ( `' F ` -e z ) ) |
| 160 |
159
|
fveq2d |
|- ( y = -u ( `' F ` -e z ) -> ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) ) |
| 161 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u -u ( `' F ` -e z ) ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
| 162 |
160 161
|
syl |
|- ( y = -u ( `' F ` -e z ) -> -e ( F ` -u y ) = -e ( F ` -u -u ( `' F ` -e z ) ) ) |
| 163 |
162
|
eqeq2d |
|- ( y = -u ( `' F ` -e z ) -> ( z = -e ( F ` -u y ) <-> z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) |
| 164 |
158 163
|
anbi12d |
|- ( y = -u ( `' F ` -e z ) -> ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) <-> ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) ) |
| 165 |
164
|
rspcev |
|- ( ( -u ( `' F ` -e z ) e. ( -u 1 [,] 1 ) /\ ( -. 0 <_ -u ( `' F ` -e z ) /\ z = -e ( F ` -u -u ( `' F ` -e z ) ) ) ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
| 166 |
107 145 156 165
|
syl12anc |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) ) |
| 167 |
|
iffalse |
|- ( -. 0 <_ y -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = -e ( F ` -u y ) ) |
| 168 |
167
|
eqeq2d |
|- ( -. 0 <_ y -> ( z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) <-> z = -e ( F ` -u y ) ) ) |
| 169 |
168
|
biimpar |
|- ( ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 170 |
169
|
reximi |
|- ( E. y e. ( -u 1 [,] 1 ) ( -. 0 <_ y /\ z = -e ( F ` -u y ) ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 171 |
166 170
|
syl |
|- ( ( z e. RR* /\ -. 0 <_ z ) -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 172 |
83 171
|
pm2.61dan |
|- ( z e. RR* -> E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) ) |
| 173 |
51 172
|
mprgbir |
|- RR* C_ { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
| 174 |
2
|
rnmpt |
|- ran G = { z | E. y e. ( -u 1 [,] 1 ) z = if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) } |
| 175 |
173 174
|
sseqtrri |
|- RR* C_ ran G |
| 176 |
50 175
|
eqssi |
|- ran G = RR* |
| 177 |
|
dffo2 |
|- ( G : ( -u 1 [,] 1 ) -onto-> RR* <-> ( G : ( -u 1 [,] 1 ) --> RR* /\ ran G = RR* ) ) |
| 178 |
48 176 177
|
mpbir2an |
|- G : ( -u 1 [,] 1 ) -onto-> RR* |
| 179 |
|
breq1 |
|- ( ( F ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 180 |
|
breq1 |
|- ( -e ( F ` -u z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) -> ( -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 181 |
|
simpl3 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z < w ) |
| 182 |
|
simpl1 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
| 183 |
|
simpr |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ z ) |
| 184 |
|
breq2 |
|- ( y = z -> ( 0 <_ y <-> 0 <_ z ) ) |
| 185 |
|
eleq1w |
|- ( y = z -> ( y e. ( 0 [,] 1 ) <-> z e. ( 0 [,] 1 ) ) ) |
| 186 |
184 185
|
imbi12d |
|- ( y = z -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) ) |
| 187 |
20
|
ex |
|- ( y e. ( -u 1 [,] 1 ) -> ( 0 <_ y -> y e. ( 0 [,] 1 ) ) ) |
| 188 |
186 187
|
vtoclga |
|- ( z e. ( -u 1 [,] 1 ) -> ( 0 <_ z -> z e. ( 0 [,] 1 ) ) ) |
| 189 |
182 183 188
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. ( 0 [,] 1 ) ) |
| 190 |
|
simpl2 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( -u 1 [,] 1 ) ) |
| 191 |
30
|
a1i |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 e. RR ) |
| 192 |
99 182
|
sselid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z e. RR ) |
| 193 |
99 190
|
sselid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. RR ) |
| 194 |
192 193 181
|
ltled |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> z <_ w ) |
| 195 |
191 192 193 183 194
|
letrd |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> 0 <_ w ) |
| 196 |
|
breq2 |
|- ( y = w -> ( 0 <_ y <-> 0 <_ w ) ) |
| 197 |
|
eleq1w |
|- ( y = w -> ( y e. ( 0 [,] 1 ) <-> w e. ( 0 [,] 1 ) ) ) |
| 198 |
196 197
|
imbi12d |
|- ( y = w -> ( ( 0 <_ y -> y e. ( 0 [,] 1 ) ) <-> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) ) |
| 199 |
198 187
|
vtoclga |
|- ( w e. ( -u 1 [,] 1 ) -> ( 0 <_ w -> w e. ( 0 [,] 1 ) ) ) |
| 200 |
190 195 199
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> w e. ( 0 [,] 1 ) ) |
| 201 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 202 |
137 201
|
mpan |
|- ( ( z e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 203 |
189 200 202
|
syl2anc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( z < w <-> ( F ` z ) < ( F ` w ) ) ) |
| 204 |
181 203
|
mpbid |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < ( F ` w ) ) |
| 205 |
195
|
iftrued |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) = ( F ` w ) ) |
| 206 |
204 205
|
breqtrrd |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ 0 <_ z ) -> ( F ` z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 207 |
|
breq2 |
|- ( ( F ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < ( F ` w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 208 |
|
breq2 |
|- ( -e ( F ` -u w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) -> ( -e ( F ` -u z ) < -e ( F ` -u w ) <-> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 209 |
|
simpl1 |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> z e. ( -u 1 [,] 1 ) ) |
| 210 |
|
simpr |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -. 0 <_ z ) |
| 211 |
184
|
notbid |
|- ( y = z -> ( -. 0 <_ y <-> -. 0 <_ z ) ) |
| 212 |
|
negeq |
|- ( y = z -> -u y = -u z ) |
| 213 |
212
|
eleq1d |
|- ( y = z -> ( -u y e. ( 0 [,] 1 ) <-> -u z e. ( 0 [,] 1 ) ) ) |
| 214 |
211 213
|
imbi12d |
|- ( y = z -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) ) |
| 215 |
42
|
ex |
|- ( y e. ( -u 1 [,] 1 ) -> ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) ) |
| 216 |
214 215
|
vtoclga |
|- ( z e. ( -u 1 [,] 1 ) -> ( -. 0 <_ z -> -u z e. ( 0 [,] 1 ) ) ) |
| 217 |
209 210 216
|
sylc |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -u z e. ( 0 [,] 1 ) ) |
| 218 |
217
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
| 219 |
24
|
ffvelcdmi |
|- ( -u z e. ( 0 [,] 1 ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 220 |
218 219
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 221 |
10 220
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
| 222 |
221
|
xnegcld |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) e. RR* ) |
| 223 |
86
|
a1i |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 e. RR* ) |
| 224 |
|
simpll2 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
| 225 |
|
simpr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ w ) |
| 226 |
224 225 199
|
sylc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> w e. ( 0 [,] 1 ) ) |
| 227 |
24
|
ffvelcdmi |
|- ( w e. ( 0 [,] 1 ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
| 228 |
226 227
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. ( 0 [,] +oo ) ) |
| 229 |
10 228
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` w ) e. RR* ) |
| 230 |
210
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -. 0 <_ z ) |
| 231 |
|
simpll1 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
| 232 |
99 231
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z e. RR ) |
| 233 |
|
ltnle |
|- ( ( z e. RR /\ 0 e. RR ) -> ( z < 0 <-> -. 0 <_ z ) ) |
| 234 |
232 30 233
|
sylancl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> -. 0 <_ z ) ) |
| 235 |
230 234
|
mpbird |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> z < 0 ) |
| 236 |
232
|
lt0neg1d |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( z < 0 <-> 0 < -u z ) ) |
| 237 |
235 236
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < -u z ) |
| 238 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
| 239 |
137 238
|
mpan |
|- ( ( 0 e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
| 240 |
113 218 239
|
sylancr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < -u z <-> ( F ` 0 ) < ( F ` -u z ) ) ) |
| 241 |
237 240
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( F ` 0 ) < ( F ` -u z ) ) |
| 242 |
131 241
|
eqbrtrrid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 < ( F ` -u z ) ) |
| 243 |
|
xlt0neg2 |
|- ( ( F ` -u z ) e. RR* -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
| 244 |
221 243
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> ( 0 < ( F ` -u z ) <-> -e ( F ` -u z ) < 0 ) ) |
| 245 |
242 244
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < 0 ) |
| 246 |
|
elxrge0 |
|- ( ( F ` w ) e. ( 0 [,] +oo ) <-> ( ( F ` w ) e. RR* /\ 0 <_ ( F ` w ) ) ) |
| 247 |
246
|
simprbi |
|- ( ( F ` w ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` w ) ) |
| 248 |
228 247
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> 0 <_ ( F ` w ) ) |
| 249 |
222 223 229 245 248
|
xrltletrd |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ 0 <_ w ) -> -e ( F ` -u z ) < ( F ` w ) ) |
| 250 |
|
simpll3 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z < w ) |
| 251 |
|
simpll1 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. ( -u 1 [,] 1 ) ) |
| 252 |
99 251
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> z e. RR ) |
| 253 |
|
simpll2 |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. ( -u 1 [,] 1 ) ) |
| 254 |
99 253
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> w e. RR ) |
| 255 |
252 254
|
ltnegd |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( z < w <-> -u w < -u z ) ) |
| 256 |
250 255
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w < -u z ) |
| 257 |
|
simpr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -. 0 <_ w ) |
| 258 |
196
|
notbid |
|- ( y = w -> ( -. 0 <_ y <-> -. 0 <_ w ) ) |
| 259 |
|
negeq |
|- ( y = w -> -u y = -u w ) |
| 260 |
259
|
eleq1d |
|- ( y = w -> ( -u y e. ( 0 [,] 1 ) <-> -u w e. ( 0 [,] 1 ) ) ) |
| 261 |
258 260
|
imbi12d |
|- ( y = w -> ( ( -. 0 <_ y -> -u y e. ( 0 [,] 1 ) ) <-> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) ) |
| 262 |
261 215
|
vtoclga |
|- ( w e. ( -u 1 [,] 1 ) -> ( -. 0 <_ w -> -u w e. ( 0 [,] 1 ) ) ) |
| 263 |
253 257 262
|
sylc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u w e. ( 0 [,] 1 ) ) |
| 264 |
217
|
adantr |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -u z e. ( 0 [,] 1 ) ) |
| 265 |
|
isorel |
|- ( ( F Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) /\ ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
| 266 |
137 265
|
mpan |
|- ( ( -u w e. ( 0 [,] 1 ) /\ -u z e. ( 0 [,] 1 ) ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
| 267 |
263 264 266
|
syl2anc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( -u w < -u z <-> ( F ` -u w ) < ( F ` -u z ) ) ) |
| 268 |
256 267
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) < ( F ` -u z ) ) |
| 269 |
24
|
ffvelcdmi |
|- ( -u w e. ( 0 [,] 1 ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
| 270 |
263 269
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. ( 0 [,] +oo ) ) |
| 271 |
10 270
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u w ) e. RR* ) |
| 272 |
264 219
|
syl |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. ( 0 [,] +oo ) ) |
| 273 |
10 272
|
sselid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( F ` -u z ) e. RR* ) |
| 274 |
|
xltneg |
|- ( ( ( F ` -u w ) e. RR* /\ ( F ` -u z ) e. RR* ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
| 275 |
271 273 274
|
syl2anc |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> ( ( F ` -u w ) < ( F ` -u z ) <-> -e ( F ` -u z ) < -e ( F ` -u w ) ) ) |
| 276 |
268 275
|
mpbid |
|- ( ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) /\ -. 0 <_ w ) -> -e ( F ` -u z ) < -e ( F ` -u w ) ) |
| 277 |
207 208 249 276
|
ifbothda |
|- ( ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) /\ -. 0 <_ z ) -> -e ( F ` -u z ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 278 |
179 180 206 277
|
ifbothda |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) /\ z < w ) -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 279 |
278
|
3expia |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 280 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
| 281 |
212
|
fveq2d |
|- ( y = z -> ( F ` -u y ) = ( F ` -u z ) ) |
| 282 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u z ) -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
| 283 |
281 282
|
syl |
|- ( y = z -> -e ( F ` -u y ) = -e ( F ` -u z ) ) |
| 284 |
184 280 283
|
ifbieq12d |
|- ( y = z -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
| 285 |
|
fvex |
|- ( F ` z ) e. _V |
| 286 |
|
xnegex |
|- -e ( F ` -u z ) e. _V |
| 287 |
285 286
|
ifex |
|- if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) e. _V |
| 288 |
284 2 287
|
fvmpt |
|- ( z e. ( -u 1 [,] 1 ) -> ( G ` z ) = if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) ) |
| 289 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
| 290 |
259
|
fveq2d |
|- ( y = w -> ( F ` -u y ) = ( F ` -u w ) ) |
| 291 |
|
xnegeq |
|- ( ( F ` -u y ) = ( F ` -u w ) -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
| 292 |
290 291
|
syl |
|- ( y = w -> -e ( F ` -u y ) = -e ( F ` -u w ) ) |
| 293 |
196 289 292
|
ifbieq12d |
|- ( y = w -> if ( 0 <_ y , ( F ` y ) , -e ( F ` -u y ) ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 294 |
|
fvex |
|- ( F ` w ) e. _V |
| 295 |
|
xnegex |
|- -e ( F ` -u w ) e. _V |
| 296 |
294 295
|
ifex |
|- if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) e. _V |
| 297 |
293 2 296
|
fvmpt |
|- ( w e. ( -u 1 [,] 1 ) -> ( G ` w ) = if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) |
| 298 |
288 297
|
breqan12d |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( ( G ` z ) < ( G ` w ) <-> if ( 0 <_ z , ( F ` z ) , -e ( F ` -u z ) ) < if ( 0 <_ w , ( F ` w ) , -e ( F ` -u w ) ) ) ) |
| 299 |
279 298
|
sylibrd |
|- ( ( z e. ( -u 1 [,] 1 ) /\ w e. ( -u 1 [,] 1 ) ) -> ( z < w -> ( G ` z ) < ( G ` w ) ) ) |
| 300 |
299
|
rgen2 |
|- A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) |
| 301 |
|
soisoi |
|- ( ( ( < Or ( -u 1 [,] 1 ) /\ < Po RR* ) /\ ( G : ( -u 1 [,] 1 ) -onto-> RR* /\ A. z e. ( -u 1 [,] 1 ) A. w e. ( -u 1 [,] 1 ) ( z < w -> ( G ` z ) < ( G ` w ) ) ) ) -> G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) ) |
| 302 |
7 9 178 300 301
|
mp4an |
|- G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) |
| 303 |
|
letsr |
|- <_ e. TosetRel |
| 304 |
303
|
elexi |
|- <_ e. _V |
| 305 |
304
|
inex1 |
|- ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V |
| 306 |
|
ssid |
|- RR* C_ RR* |
| 307 |
|
leiso |
|- ( ( ( -u 1 [,] 1 ) C_ RR* /\ RR* C_ RR* ) -> ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) ) |
| 308 |
4 306 307
|
mp2an |
|- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
| 309 |
302 308
|
mpbi |
|- G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) |
| 310 |
|
isores1 |
|- ( G Isom <_ , <_ ( ( -u 1 [,] 1 ) , RR* ) <-> G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) |
| 311 |
309 310
|
mpbi |
|- G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) |
| 312 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
| 313 |
303 312
|
ax-mp |
|- <_ e. PosetRel |
| 314 |
|
ledm |
|- RR* = dom <_ |
| 315 |
314
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( -u 1 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) ) |
| 316 |
313 4 315
|
mp2an |
|- dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) = ( -u 1 [,] 1 ) |
| 317 |
316
|
eqcomi |
|- ( -u 1 [,] 1 ) = dom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) |
| 318 |
317 314
|
ordthmeo |
|- ( ( ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) e. _V /\ <_ e. TosetRel /\ G Isom ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) , <_ ( ( -u 1 [,] 1 ) , RR* ) ) -> G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) ) |
| 319 |
305 303 311 318
|
mp3an |
|- G e. ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
| 320 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
| 321 |
3 320
|
xrrest2 |
|- ( ( -u 1 [,] 1 ) C_ RR -> ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) ) |
| 322 |
99 321
|
ax-mp |
|- ( J |`t ( -u 1 [,] 1 ) ) = ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) |
| 323 |
|
ordtresticc |
|- ( ( ordTop ` <_ ) |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
| 324 |
322 323
|
eqtri |
|- ( J |`t ( -u 1 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) |
| 325 |
324
|
oveq1i |
|- ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) = ( ( ordTop ` ( <_ i^i ( ( -u 1 [,] 1 ) X. ( -u 1 [,] 1 ) ) ) ) Homeo ( ordTop ` <_ ) ) |
| 326 |
319 325
|
eleqtrri |
|- G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) |
| 327 |
302 326
|
pm3.2i |
|- ( G Isom < , < ( ( -u 1 [,] 1 ) , RR* ) /\ G e. ( ( J |`t ( -u 1 [,] 1 ) ) Homeo ( ordTop ` <_ ) ) ) |