Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
|- < Or RR* |
2 |
1
|
a1i |
|- ( T. -> < Or RR* ) |
3 |
|
pnfxr |
|- +oo e. RR* |
4 |
3
|
a1i |
|- ( T. -> +oo e. RR* ) |
5 |
|
noel |
|- -. y e. (/) |
6 |
5
|
pm2.21i |
|- ( y e. (/) -> -. y < +oo ) |
7 |
6
|
adantl |
|- ( ( T. /\ y e. (/) ) -> -. y < +oo ) |
8 |
|
pnfnlt |
|- ( y e. RR* -> -. +oo < y ) |
9 |
8
|
pm2.21d |
|- ( y e. RR* -> ( +oo < y -> E. z e. (/) z < y ) ) |
10 |
9
|
imp |
|- ( ( y e. RR* /\ +oo < y ) -> E. z e. (/) z < y ) |
11 |
10
|
adantl |
|- ( ( T. /\ ( y e. RR* /\ +oo < y ) ) -> E. z e. (/) z < y ) |
12 |
2 4 7 11
|
eqinfd |
|- ( T. -> inf ( (/) , RR* , < ) = +oo ) |
13 |
12
|
mptru |
|- inf ( (/) , RR* , < ) = +oo |