Step |
Hyp |
Ref |
Expression |
1 |
|
xrleloe |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
3 |
|
xrlttr |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
4 |
3
|
expd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> ( B < C -> A < C ) ) ) |
5 |
|
breq1 |
|- ( A = B -> ( A < C <-> B < C ) ) |
6 |
5
|
biimprd |
|- ( A = B -> ( B < C -> A < C ) ) |
7 |
6
|
a1i |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A = B -> ( B < C -> A < C ) ) ) |
8 |
4 7
|
jaod |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B \/ A = B ) -> ( B < C -> A < C ) ) ) |
9 |
2 8
|
sylbid |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A <_ B -> ( B < C -> A < C ) ) ) |
10 |
9
|
impd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |