| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrleloe |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) | 
						
							| 3 |  | xrlttr |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) | 
						
							| 4 | 3 | expd |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> ( B < C -> A < C ) ) ) | 
						
							| 5 |  | breq1 |  |-  ( A = B -> ( A < C <-> B < C ) ) | 
						
							| 6 | 5 | biimprd |  |-  ( A = B -> ( B < C -> A < C ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A = B -> ( B < C -> A < C ) ) ) | 
						
							| 8 | 4 7 | jaod |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B \/ A = B ) -> ( B < C -> A < C ) ) ) | 
						
							| 9 | 2 8 | sylbid |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A <_ B -> ( B < C -> A < C ) ) ) | 
						
							| 10 | 9 | impd |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |