Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrleneltd.a | |- ( ph -> A e. RR* ) |
|
xrleneltd.b | |- ( ph -> B e. RR* ) |
||
xrleneltd.alb | |- ( ph -> A <_ B ) |
||
xrleneltd.anb | |- ( ph -> A =/= B ) |
||
Assertion | xrleneltd | |- ( ph -> A < B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleneltd.a | |- ( ph -> A e. RR* ) |
|
2 | xrleneltd.b | |- ( ph -> B e. RR* ) |
|
3 | xrleneltd.alb | |- ( ph -> A <_ B ) |
|
4 | xrleneltd.anb | |- ( ph -> A =/= B ) |
|
5 | 4 | necomd | |- ( ph -> B =/= A ) |
6 | xrleltne | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
|
7 | 1 2 3 6 | syl3anc | |- ( ph -> ( A < B <-> B =/= A ) ) |
8 | 5 7 | mpbird | |- ( ph -> A < B ) |