Metamath Proof Explorer


Theorem xrleneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrleneltd.a
|- ( ph -> A e. RR* )
xrleneltd.b
|- ( ph -> B e. RR* )
xrleneltd.alb
|- ( ph -> A <_ B )
xrleneltd.anb
|- ( ph -> A =/= B )
Assertion xrleneltd
|- ( ph -> A < B )

Proof

Step Hyp Ref Expression
1 xrleneltd.a
 |-  ( ph -> A e. RR* )
2 xrleneltd.b
 |-  ( ph -> B e. RR* )
3 xrleneltd.alb
 |-  ( ph -> A <_ B )
4 xrleneltd.anb
 |-  ( ph -> A =/= B )
5 4 necomd
 |-  ( ph -> B =/= A )
6 xrleltne
 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B <-> B =/= A ) )
7 1 2 3 6 syl3anc
 |-  ( ph -> ( A < B <-> B =/= A ) )
8 5 7 mpbird
 |-  ( ph -> A < B )