Metamath Proof Explorer


Theorem xrlenltd

Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrlenltd.a
|- ( ph -> A e. RR* )
xrlenltd.b
|- ( ph -> B e. RR* )
Assertion xrlenltd
|- ( ph -> ( A <_ B <-> -. B < A ) )

Proof

Step Hyp Ref Expression
1 xrlenltd.a
 |-  ( ph -> A e. RR* )
2 xrlenltd.b
 |-  ( ph -> B e. RR* )
3 xrlenlt
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A <_ B <-> -. B < A ) )