Metamath Proof Explorer


Theorem xrletri

Description: Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrletri
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B \/ B <_ A ) )

Proof

Step Hyp Ref Expression
1 xrltnle
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -. A <_ B ) )
2 1 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -. A <_ B ) )
3 xrltle
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B < A -> B <_ A ) )
4 3 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B < A -> B <_ A ) )
5 2 4 sylbird
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( -. A <_ B -> B <_ A ) )
6 5 orrd
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B \/ B <_ A ) )