Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrltled.a | |- ( ph -> A e. RR* ) |
|
xrltled.b | |- ( ph -> B e. RR* ) |
||
xrltled.altb | |- ( ph -> A < B ) |
||
Assertion | xrltled | |- ( ph -> A <_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltled.a | |- ( ph -> A e. RR* ) |
|
2 | xrltled.b | |- ( ph -> B e. RR* ) |
|
3 | xrltled.altb | |- ( ph -> A < B ) |
|
4 | xrltle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
|
5 | 1 2 4 | syl2anc | |- ( ph -> ( A < B -> A <_ B ) ) |
6 | 3 5 | mpd | |- ( ph -> A <_ B ) |