Metamath Proof Explorer


Theorem xrltled

Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrltled.a
|- ( ph -> A e. RR* )
xrltled.b
|- ( ph -> B e. RR* )
xrltled.altb
|- ( ph -> A < B )
Assertion xrltled
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 xrltled.a
 |-  ( ph -> A e. RR* )
2 xrltled.b
 |-  ( ph -> B e. RR* )
3 xrltled.altb
 |-  ( ph -> A < B )
4 xrltle
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( A < B -> A <_ B ) )
6 3 5 mpd
 |-  ( ph -> A <_ B )