Metamath Proof Explorer


Theorem xrltletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltletr
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B <_ C ) -> A < C ) )

Proof

Step Hyp Ref Expression
1 xrleloe
 |-  ( ( B e. RR* /\ C e. RR* ) -> ( B <_ C <-> ( B < C \/ B = C ) ) )
2 1 3adant1
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B <_ C <-> ( B < C \/ B = C ) ) )
3 xrlttr
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) )
4 3 expcomd
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B < C -> ( A < B -> A < C ) ) )
5 breq2
 |-  ( B = C -> ( A < B <-> A < C ) )
6 5 biimpd
 |-  ( B = C -> ( A < B -> A < C ) )
7 6 a1i
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B = C -> ( A < B -> A < C ) ) )
8 4 7 jaod
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( B < C \/ B = C ) -> ( A < B -> A < C ) ) )
9 2 8 sylbid
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B <_ C -> ( A < B -> A < C ) ) )
10 9 impcomd
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B <_ C ) -> A < C ) )