| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|- ( A < B -> ( A < B \/ B < A ) ) |
| 2 |
|
xrltso |
|- < Or RR* |
| 3 |
|
sotrieq |
|- ( ( < Or RR* /\ ( A e. RR* /\ B e. RR* ) ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) |
| 4 |
2 3
|
mpan |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> -. ( A < B \/ B < A ) ) ) |
| 5 |
4
|
necon2abid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A < B \/ B < A ) <-> A =/= B ) ) |
| 6 |
1 5
|
imbitrid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A =/= B ) ) |
| 7 |
6
|
3impia |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A =/= B ) |
| 8 |
7
|
necomd |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B =/= A ) |