Metamath Proof Explorer


Theorem xrltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrltnled.1
|- ( ph -> A e. RR* )
xrltnled.2
|- ( ph -> B e. RR* )
Assertion xrltnled
|- ( ph -> ( A < B <-> -. B <_ A ) )

Proof

Step Hyp Ref Expression
1 xrltnled.1
 |-  ( ph -> A e. RR* )
2 xrltnled.2
 |-  ( ph -> B e. RR* )
3 xrltnle
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A < B <-> -. B <_ A ) )