Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
ltnr |
|- ( A e. RR -> -. A < A ) |
3 |
|
pnfnre |
|- +oo e/ RR |
4 |
3
|
neli |
|- -. +oo e. RR |
5 |
4
|
intnan |
|- -. ( +oo e. RR /\ +oo e. RR ) |
6 |
5
|
intnanr |
|- -. ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
7 |
|
pnfnemnf |
|- +oo =/= -oo |
8 |
7
|
neii |
|- -. +oo = -oo |
9 |
8
|
intnanr |
|- -. ( +oo = -oo /\ +oo = +oo ) |
10 |
6 9
|
pm3.2ni |
|- -. ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
11 |
4
|
intnanr |
|- -. ( +oo e. RR /\ +oo = +oo ) |
12 |
4
|
intnan |
|- -. ( +oo = -oo /\ +oo e. RR ) |
13 |
11 12
|
pm3.2ni |
|- -. ( ( +oo e. RR /\ +oo = +oo ) \/ ( +oo = -oo /\ +oo e. RR ) ) |
14 |
10 13
|
pm3.2ni |
|- -. ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
15 |
|
pnfxr |
|- +oo e. RR* |
16 |
|
ltxr |
|- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( +oo < +oo <-> ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
17 |
15 15 16
|
mp2an |
|- ( +oo < +oo <-> ( ( ( ( +oo e. RR /\ +oo e. RR ) /\ +oo |
18 |
14 17
|
mtbir |
|- -. +oo < +oo |
19 |
|
breq12 |
|- ( ( A = +oo /\ A = +oo ) -> ( A < A <-> +oo < +oo ) ) |
20 |
19
|
anidms |
|- ( A = +oo -> ( A < A <-> +oo < +oo ) ) |
21 |
18 20
|
mtbiri |
|- ( A = +oo -> -. A < A ) |
22 |
|
mnfnre |
|- -oo e/ RR |
23 |
22
|
neli |
|- -. -oo e. RR |
24 |
23
|
intnan |
|- -. ( -oo e. RR /\ -oo e. RR ) |
25 |
24
|
intnanr |
|- -. ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
26 |
7
|
nesymi |
|- -. -oo = +oo |
27 |
26
|
intnan |
|- -. ( -oo = -oo /\ -oo = +oo ) |
28 |
25 27
|
pm3.2ni |
|- -. ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
29 |
23
|
intnanr |
|- -. ( -oo e. RR /\ -oo = +oo ) |
30 |
23
|
intnan |
|- -. ( -oo = -oo /\ -oo e. RR ) |
31 |
29 30
|
pm3.2ni |
|- -. ( ( -oo e. RR /\ -oo = +oo ) \/ ( -oo = -oo /\ -oo e. RR ) ) |
32 |
28 31
|
pm3.2ni |
|- -. ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
33 |
|
mnfxr |
|- -oo e. RR* |
34 |
|
ltxr |
|- ( ( -oo e. RR* /\ -oo e. RR* ) -> ( -oo < -oo <-> ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
35 |
33 33 34
|
mp2an |
|- ( -oo < -oo <-> ( ( ( ( -oo e. RR /\ -oo e. RR ) /\ -oo |
36 |
32 35
|
mtbir |
|- -. -oo < -oo |
37 |
|
breq12 |
|- ( ( A = -oo /\ A = -oo ) -> ( A < A <-> -oo < -oo ) ) |
38 |
37
|
anidms |
|- ( A = -oo -> ( A < A <-> -oo < -oo ) ) |
39 |
36 38
|
mtbiri |
|- ( A = -oo -> -. A < A ) |
40 |
2 21 39
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> -. A < A ) |
41 |
1 40
|
sylbi |
|- ( A e. RR* -> -. A < A ) |