Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
2 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
3 |
|
ltnsym |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -. B < A ) ) |
4 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
5 |
|
pnfnlt |
|- ( A e. RR* -> -. +oo < A ) |
6 |
4 5
|
syl |
|- ( A e. RR -> -. +oo < A ) |
7 |
6
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> -. +oo < A ) |
8 |
|
breq1 |
|- ( B = +oo -> ( B < A <-> +oo < A ) ) |
9 |
8
|
adantl |
|- ( ( A e. RR /\ B = +oo ) -> ( B < A <-> +oo < A ) ) |
10 |
7 9
|
mtbird |
|- ( ( A e. RR /\ B = +oo ) -> -. B < A ) |
11 |
10
|
a1d |
|- ( ( A e. RR /\ B = +oo ) -> ( A < B -> -. B < A ) ) |
12 |
|
nltmnf |
|- ( A e. RR* -> -. A < -oo ) |
13 |
4 12
|
syl |
|- ( A e. RR -> -. A < -oo ) |
14 |
13
|
adantr |
|- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
15 |
|
breq2 |
|- ( B = -oo -> ( A < B <-> A < -oo ) ) |
16 |
15
|
adantl |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
17 |
14 16
|
mtbird |
|- ( ( A e. RR /\ B = -oo ) -> -. A < B ) |
18 |
17
|
pm2.21d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B -> -. B < A ) ) |
19 |
3 11 18
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
20 |
|
pnfnlt |
|- ( B e. RR* -> -. +oo < B ) |
21 |
20
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
22 |
|
breq1 |
|- ( A = +oo -> ( A < B <-> +oo < B ) ) |
23 |
22
|
adantr |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
24 |
21 23
|
mtbird |
|- ( ( A = +oo /\ B e. RR* ) -> -. A < B ) |
25 |
24
|
pm2.21d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> -. B < A ) ) |
26 |
2 25
|
sylan2br |
|- ( ( A = +oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
27 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
28 |
|
nltmnf |
|- ( B e. RR* -> -. B < -oo ) |
29 |
27 28
|
syl |
|- ( B e. RR -> -. B < -oo ) |
30 |
29
|
adantl |
|- ( ( A = -oo /\ B e. RR ) -> -. B < -oo ) |
31 |
|
breq2 |
|- ( A = -oo -> ( B < A <-> B < -oo ) ) |
32 |
31
|
adantr |
|- ( ( A = -oo /\ B e. RR ) -> ( B < A <-> B < -oo ) ) |
33 |
30 32
|
mtbird |
|- ( ( A = -oo /\ B e. RR ) -> -. B < A ) |
34 |
33
|
a1d |
|- ( ( A = -oo /\ B e. RR ) -> ( A < B -> -. B < A ) ) |
35 |
|
mnfxr |
|- -oo e. RR* |
36 |
|
pnfnlt |
|- ( -oo e. RR* -> -. +oo < -oo ) |
37 |
35 36
|
ax-mp |
|- -. +oo < -oo |
38 |
|
breq12 |
|- ( ( B = +oo /\ A = -oo ) -> ( B < A <-> +oo < -oo ) ) |
39 |
37 38
|
mtbiri |
|- ( ( B = +oo /\ A = -oo ) -> -. B < A ) |
40 |
39
|
ancoms |
|- ( ( A = -oo /\ B = +oo ) -> -. B < A ) |
41 |
40
|
a1d |
|- ( ( A = -oo /\ B = +oo ) -> ( A < B -> -. B < A ) ) |
42 |
|
xrltnr |
|- ( -oo e. RR* -> -. -oo < -oo ) |
43 |
35 42
|
ax-mp |
|- -. -oo < -oo |
44 |
|
breq12 |
|- ( ( A = -oo /\ B = -oo ) -> ( A < B <-> -oo < -oo ) ) |
45 |
43 44
|
mtbiri |
|- ( ( A = -oo /\ B = -oo ) -> -. A < B ) |
46 |
45
|
pm2.21d |
|- ( ( A = -oo /\ B = -oo ) -> ( A < B -> -. B < A ) ) |
47 |
34 41 46
|
3jaodan |
|- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
48 |
19 26 47
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> -. B < A ) ) |
49 |
1 2 48
|
syl2anb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -. B < A ) ) |