| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 2 |
|
elxr |
|- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
| 3 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 4 |
|
lttr |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 5 |
4
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 6 |
5
|
an32s |
|- ( ( ( A e. RR /\ C e. RR ) /\ B e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 7 |
|
rexr |
|- ( C e. RR -> C e. RR* ) |
| 8 |
|
pnfnlt |
|- ( C e. RR* -> -. +oo < C ) |
| 9 |
7 8
|
syl |
|- ( C e. RR -> -. +oo < C ) |
| 10 |
9
|
adantr |
|- ( ( C e. RR /\ B = +oo ) -> -. +oo < C ) |
| 11 |
|
breq1 |
|- ( B = +oo -> ( B < C <-> +oo < C ) ) |
| 12 |
11
|
adantl |
|- ( ( C e. RR /\ B = +oo ) -> ( B < C <-> +oo < C ) ) |
| 13 |
10 12
|
mtbird |
|- ( ( C e. RR /\ B = +oo ) -> -. B < C ) |
| 14 |
13
|
pm2.21d |
|- ( ( C e. RR /\ B = +oo ) -> ( B < C -> A < C ) ) |
| 15 |
14
|
adantll |
|- ( ( ( A e. RR /\ C e. RR ) /\ B = +oo ) -> ( B < C -> A < C ) ) |
| 16 |
15
|
adantld |
|- ( ( ( A e. RR /\ C e. RR ) /\ B = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 17 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 18 |
|
nltmnf |
|- ( A e. RR* -> -. A < -oo ) |
| 19 |
17 18
|
syl |
|- ( A e. RR -> -. A < -oo ) |
| 20 |
19
|
adantr |
|- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
| 21 |
|
breq2 |
|- ( B = -oo -> ( A < B <-> A < -oo ) ) |
| 22 |
21
|
adantl |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 23 |
20 22
|
mtbird |
|- ( ( A e. RR /\ B = -oo ) -> -. A < B ) |
| 24 |
23
|
pm2.21d |
|- ( ( A e. RR /\ B = -oo ) -> ( A < B -> A < C ) ) |
| 25 |
24
|
adantlr |
|- ( ( ( A e. RR /\ C e. RR ) /\ B = -oo ) -> ( A < B -> A < C ) ) |
| 26 |
25
|
adantrd |
|- ( ( ( A e. RR /\ C e. RR ) /\ B = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 27 |
6 16 26
|
3jaodan |
|- ( ( ( A e. RR /\ C e. RR ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 28 |
3 27
|
sylan2b |
|- ( ( ( A e. RR /\ C e. RR ) /\ B e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 29 |
28
|
an32s |
|- ( ( ( A e. RR /\ B e. RR* ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 30 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
| 31 |
30
|
adantr |
|- ( ( A e. RR /\ C = +oo ) -> A < +oo ) |
| 32 |
|
breq2 |
|- ( C = +oo -> ( A < C <-> A < +oo ) ) |
| 33 |
32
|
adantl |
|- ( ( A e. RR /\ C = +oo ) -> ( A < C <-> A < +oo ) ) |
| 34 |
31 33
|
mpbird |
|- ( ( A e. RR /\ C = +oo ) -> A < C ) |
| 35 |
34
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR* ) /\ C = +oo ) -> A < C ) |
| 36 |
35
|
a1d |
|- ( ( ( A e. RR /\ B e. RR* ) /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 37 |
|
nltmnf |
|- ( B e. RR* -> -. B < -oo ) |
| 38 |
37
|
adantr |
|- ( ( B e. RR* /\ C = -oo ) -> -. B < -oo ) |
| 39 |
|
breq2 |
|- ( C = -oo -> ( B < C <-> B < -oo ) ) |
| 40 |
39
|
adantl |
|- ( ( B e. RR* /\ C = -oo ) -> ( B < C <-> B < -oo ) ) |
| 41 |
38 40
|
mtbird |
|- ( ( B e. RR* /\ C = -oo ) -> -. B < C ) |
| 42 |
41
|
pm2.21d |
|- ( ( B e. RR* /\ C = -oo ) -> ( B < C -> A < C ) ) |
| 43 |
42
|
adantld |
|- ( ( B e. RR* /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 44 |
43
|
adantll |
|- ( ( ( A e. RR /\ B e. RR* ) /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 45 |
29 36 44
|
3jaodan |
|- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 46 |
45
|
anasss |
|- ( ( A e. RR /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 47 |
|
pnfnlt |
|- ( B e. RR* -> -. +oo < B ) |
| 48 |
47
|
adantl |
|- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 49 |
|
breq1 |
|- ( A = +oo -> ( A < B <-> +oo < B ) ) |
| 50 |
49
|
adantr |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 51 |
48 50
|
mtbird |
|- ( ( A = +oo /\ B e. RR* ) -> -. A < B ) |
| 52 |
51
|
pm2.21d |
|- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> A < C ) ) |
| 53 |
52
|
adantrd |
|- ( ( A = +oo /\ B e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 54 |
53
|
adantrr |
|- ( ( A = +oo /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 55 |
|
mnflt |
|- ( C e. RR -> -oo < C ) |
| 56 |
55
|
adantl |
|- ( ( A = -oo /\ C e. RR ) -> -oo < C ) |
| 57 |
|
breq1 |
|- ( A = -oo -> ( A < C <-> -oo < C ) ) |
| 58 |
57
|
adantr |
|- ( ( A = -oo /\ C e. RR ) -> ( A < C <-> -oo < C ) ) |
| 59 |
56 58
|
mpbird |
|- ( ( A = -oo /\ C e. RR ) -> A < C ) |
| 60 |
59
|
a1d |
|- ( ( A = -oo /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 61 |
60
|
adantlr |
|- ( ( ( A = -oo /\ B e. RR* ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 62 |
|
mnfltpnf |
|- -oo < +oo |
| 63 |
|
breq12 |
|- ( ( A = -oo /\ C = +oo ) -> ( A < C <-> -oo < +oo ) ) |
| 64 |
62 63
|
mpbiri |
|- ( ( A = -oo /\ C = +oo ) -> A < C ) |
| 65 |
64
|
a1d |
|- ( ( A = -oo /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 66 |
65
|
adantlr |
|- ( ( ( A = -oo /\ B e. RR* ) /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 67 |
43
|
adantll |
|- ( ( ( A = -oo /\ B e. RR* ) /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 68 |
61 66 67
|
3jaodan |
|- ( ( ( A = -oo /\ B e. RR* ) /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 69 |
68
|
anasss |
|- ( ( A = -oo /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 70 |
46 54 69
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 71 |
70
|
3impb |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 72 |
2 71
|
syl3an3b |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 73 |
1 72
|
syl3an1b |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |