Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrlttrd.1 | |- ( ph -> A e. RR* ) |
|
xrlttrd.2 | |- ( ph -> B e. RR* ) |
||
xrlttrd.3 | |- ( ph -> C e. RR* ) |
||
xrlttrd.4 | |- ( ph -> A < B ) |
||
xrlttrd.5 | |- ( ph -> B < C ) |
||
Assertion | xrlttrd | |- ( ph -> A < C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttrd.1 | |- ( ph -> A e. RR* ) |
|
2 | xrlttrd.2 | |- ( ph -> B e. RR* ) |
|
3 | xrlttrd.3 | |- ( ph -> C e. RR* ) |
|
4 | xrlttrd.4 | |- ( ph -> A < B ) |
|
5 | xrlttrd.5 | |- ( ph -> B < C ) |
|
6 | xrlttr | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
|
7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( A < B /\ B < C ) -> A < C ) ) |
8 | 4 5 7 | mp2and | |- ( ph -> A < C ) |