Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrlttrd.1 | |- ( ph -> A e. RR* )  | 
					|
| xrlttrd.2 | |- ( ph -> B e. RR* )  | 
					||
| xrlttrd.3 | |- ( ph -> C e. RR* )  | 
					||
| xrlttrd.4 | |- ( ph -> A < B )  | 
					||
| xrlttrd.5 | |- ( ph -> B < C )  | 
					||
| Assertion | xrlttrd | |- ( ph -> A < C )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xrlttrd.1 | |- ( ph -> A e. RR* )  | 
						|
| 2 | xrlttrd.2 | |- ( ph -> B e. RR* )  | 
						|
| 3 | xrlttrd.3 | |- ( ph -> C e. RR* )  | 
						|
| 4 | xrlttrd.4 | |- ( ph -> A < B )  | 
						|
| 5 | xrlttrd.5 | |- ( ph -> B < C )  | 
						|
| 6 | xrlttr | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) )  | 
						|
| 7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( A < B /\ B < C ) -> A < C ) )  | 
						
| 8 | 4 5 7 | mp2and | |- ( ph -> A < C )  |