Step |
Hyp |
Ref |
Expression |
1 |
|
xrltnr |
|- ( A e. RR* -> -. A < A ) |
2 |
1
|
adantr |
|- ( ( A e. RR* /\ A = B ) -> -. A < A ) |
3 |
|
breq2 |
|- ( A = B -> ( A < A <-> A < B ) ) |
4 |
3
|
adantl |
|- ( ( A e. RR* /\ A = B ) -> ( A < A <-> A < B ) ) |
5 |
2 4
|
mtbid |
|- ( ( A e. RR* /\ A = B ) -> -. A < B ) |
6 |
5
|
ex |
|- ( A e. RR* -> ( A = B -> -. A < B ) ) |
7 |
6
|
adantr |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B -> -. A < B ) ) |
8 |
|
xrltnsym |
|- ( ( B e. RR* /\ A e. RR* ) -> ( B < A -> -. A < B ) ) |
9 |
8
|
ancoms |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B < A -> -. A < B ) ) |
10 |
7 9
|
jaod |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A = B \/ B < A ) -> -. A < B ) ) |
11 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
12 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
13 |
|
axlttri |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
14 |
13
|
biimprd |
|- ( ( A e. RR /\ B e. RR ) -> ( -. ( A = B \/ B < A ) -> A < B ) ) |
15 |
14
|
con1d |
|- ( ( A e. RR /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
16 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
17 |
16
|
adantr |
|- ( ( A e. RR /\ B = +oo ) -> A < +oo ) |
18 |
|
breq2 |
|- ( B = +oo -> ( A < B <-> A < +oo ) ) |
19 |
18
|
adantl |
|- ( ( A e. RR /\ B = +oo ) -> ( A < B <-> A < +oo ) ) |
20 |
17 19
|
mpbird |
|- ( ( A e. RR /\ B = +oo ) -> A < B ) |
21 |
20
|
pm2.24d |
|- ( ( A e. RR /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
22 |
|
mnflt |
|- ( A e. RR -> -oo < A ) |
23 |
22
|
adantr |
|- ( ( A e. RR /\ B = -oo ) -> -oo < A ) |
24 |
|
breq1 |
|- ( B = -oo -> ( B < A <-> -oo < A ) ) |
25 |
24
|
adantl |
|- ( ( A e. RR /\ B = -oo ) -> ( B < A <-> -oo < A ) ) |
26 |
23 25
|
mpbird |
|- ( ( A e. RR /\ B = -oo ) -> B < A ) |
27 |
26
|
olcd |
|- ( ( A e. RR /\ B = -oo ) -> ( A = B \/ B < A ) ) |
28 |
27
|
a1d |
|- ( ( A e. RR /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
29 |
15 21 28
|
3jaodan |
|- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
30 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
31 |
30
|
adantl |
|- ( ( A = +oo /\ B e. RR ) -> B < +oo ) |
32 |
|
breq2 |
|- ( A = +oo -> ( B < A <-> B < +oo ) ) |
33 |
32
|
adantr |
|- ( ( A = +oo /\ B e. RR ) -> ( B < A <-> B < +oo ) ) |
34 |
31 33
|
mpbird |
|- ( ( A = +oo /\ B e. RR ) -> B < A ) |
35 |
34
|
olcd |
|- ( ( A = +oo /\ B e. RR ) -> ( A = B \/ B < A ) ) |
36 |
35
|
a1d |
|- ( ( A = +oo /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
37 |
|
eqtr3 |
|- ( ( A = +oo /\ B = +oo ) -> A = B ) |
38 |
37
|
orcd |
|- ( ( A = +oo /\ B = +oo ) -> ( A = B \/ B < A ) ) |
39 |
38
|
a1d |
|- ( ( A = +oo /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
40 |
|
mnfltpnf |
|- -oo < +oo |
41 |
|
breq12 |
|- ( ( B = -oo /\ A = +oo ) -> ( B < A <-> -oo < +oo ) ) |
42 |
40 41
|
mpbiri |
|- ( ( B = -oo /\ A = +oo ) -> B < A ) |
43 |
42
|
ancoms |
|- ( ( A = +oo /\ B = -oo ) -> B < A ) |
44 |
43
|
olcd |
|- ( ( A = +oo /\ B = -oo ) -> ( A = B \/ B < A ) ) |
45 |
44
|
a1d |
|- ( ( A = +oo /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
46 |
36 39 45
|
3jaodan |
|- ( ( A = +oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
47 |
|
mnflt |
|- ( B e. RR -> -oo < B ) |
48 |
47
|
adantl |
|- ( ( A = -oo /\ B e. RR ) -> -oo < B ) |
49 |
|
breq1 |
|- ( A = -oo -> ( A < B <-> -oo < B ) ) |
50 |
49
|
adantr |
|- ( ( A = -oo /\ B e. RR ) -> ( A < B <-> -oo < B ) ) |
51 |
48 50
|
mpbird |
|- ( ( A = -oo /\ B e. RR ) -> A < B ) |
52 |
51
|
pm2.24d |
|- ( ( A = -oo /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
53 |
|
breq12 |
|- ( ( A = -oo /\ B = +oo ) -> ( A < B <-> -oo < +oo ) ) |
54 |
40 53
|
mpbiri |
|- ( ( A = -oo /\ B = +oo ) -> A < B ) |
55 |
54
|
pm2.24d |
|- ( ( A = -oo /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
56 |
|
eqtr3 |
|- ( ( A = -oo /\ B = -oo ) -> A = B ) |
57 |
56
|
orcd |
|- ( ( A = -oo /\ B = -oo ) -> ( A = B \/ B < A ) ) |
58 |
57
|
a1d |
|- ( ( A = -oo /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
59 |
52 55 58
|
3jaodan |
|- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
60 |
29 46 59
|
3jaoian |
|- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
61 |
11 12 60
|
syl2anb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
62 |
10 61
|
impbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A = B \/ B < A ) <-> -. A < B ) ) |
63 |
62
|
con2bid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |