Metamath Proof Explorer


Theorem xrmineq

Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion xrmineq
|- ( ( A e. RR* /\ B e. RR* /\ B <_ A ) -> if ( A <_ B , A , B ) = B )

Proof

Step Hyp Ref Expression
1 ifid
 |-  if ( A <_ B , B , B ) = B
2 xrletri3
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B = A <-> ( B <_ A /\ A <_ B ) ) )
3 2 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B = A <-> ( B <_ A /\ A <_ B ) ) )
4 3 biimpar
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( B <_ A /\ A <_ B ) ) -> B = A )
5 4 anassrs
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ B <_ A ) /\ A <_ B ) -> B = A )
6 5 ifeq1da
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ B <_ A ) -> if ( A <_ B , B , B ) = if ( A <_ B , A , B ) )
7 6 3impa
 |-  ( ( A e. RR* /\ B e. RR* /\ B <_ A ) -> if ( A <_ B , B , B ) = if ( A <_ B , A , B ) )
8 1 7 syl5reqr
 |-  ( ( A e. RR* /\ B e. RR* /\ B <_ A ) -> if ( A <_ B , A , B ) = B )