| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.61 |
|- ( ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) /\ -. A = -oo ) <-> ( ( A e. RR \/ A = +oo ) /\ -. A = -oo ) ) |
| 2 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 3 |
|
df-3or |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
| 4 |
2 3
|
bitri |
|- ( A e. RR* <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
| 5 |
|
df-ne |
|- ( A =/= -oo <-> -. A = -oo ) |
| 6 |
4 5
|
anbi12i |
|- ( ( A e. RR* /\ A =/= -oo ) <-> ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) /\ -. A = -oo ) ) |
| 7 |
|
renemnf |
|- ( A e. RR -> A =/= -oo ) |
| 8 |
|
pnfnemnf |
|- +oo =/= -oo |
| 9 |
|
neeq1 |
|- ( A = +oo -> ( A =/= -oo <-> +oo =/= -oo ) ) |
| 10 |
8 9
|
mpbiri |
|- ( A = +oo -> A =/= -oo ) |
| 11 |
7 10
|
jaoi |
|- ( ( A e. RR \/ A = +oo ) -> A =/= -oo ) |
| 12 |
11
|
neneqd |
|- ( ( A e. RR \/ A = +oo ) -> -. A = -oo ) |
| 13 |
12
|
pm4.71i |
|- ( ( A e. RR \/ A = +oo ) <-> ( ( A e. RR \/ A = +oo ) /\ -. A = -oo ) ) |
| 14 |
1 6 13
|
3bitr4i |
|- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |