| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.61 |
|- ( ( ( ( A e. RR \/ A = -oo ) \/ A = +oo ) /\ -. A = +oo ) <-> ( ( A e. RR \/ A = -oo ) /\ -. A = +oo ) ) |
| 2 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 3 |
|
df-3or |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
| 4 |
|
or32 |
|- ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) <-> ( ( A e. RR \/ A = -oo ) \/ A = +oo ) ) |
| 5 |
2 3 4
|
3bitri |
|- ( A e. RR* <-> ( ( A e. RR \/ A = -oo ) \/ A = +oo ) ) |
| 6 |
|
df-ne |
|- ( A =/= +oo <-> -. A = +oo ) |
| 7 |
5 6
|
anbi12i |
|- ( ( A e. RR* /\ A =/= +oo ) <-> ( ( ( A e. RR \/ A = -oo ) \/ A = +oo ) /\ -. A = +oo ) ) |
| 8 |
|
renepnf |
|- ( A e. RR -> A =/= +oo ) |
| 9 |
|
mnfnepnf |
|- -oo =/= +oo |
| 10 |
|
neeq1 |
|- ( A = -oo -> ( A =/= +oo <-> -oo =/= +oo ) ) |
| 11 |
9 10
|
mpbiri |
|- ( A = -oo -> A =/= +oo ) |
| 12 |
8 11
|
jaoi |
|- ( ( A e. RR \/ A = -oo ) -> A =/= +oo ) |
| 13 |
12
|
neneqd |
|- ( ( A e. RR \/ A = -oo ) -> -. A = +oo ) |
| 14 |
13
|
pm4.71i |
|- ( ( A e. RR \/ A = -oo ) <-> ( ( A e. RR \/ A = -oo ) /\ -. A = +oo ) ) |
| 15 |
1 7 14
|
3bitr4i |
|- ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) ) |