Metamath Proof Explorer


Theorem xrnltled

Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrnltled.1
|- ( ph -> A e. RR* )
xrnltled.2
|- ( ph -> B e. RR* )
xrnltled.3
|- ( ph -> -. B < A )
Assertion xrnltled
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 xrnltled.1
 |-  ( ph -> A e. RR* )
2 xrnltled.2
 |-  ( ph -> B e. RR* )
3 xrnltled.3
 |-  ( ph -> -. B < A )
4 1 2 xrlenltd
 |-  ( ph -> ( A <_ B <-> -. B < A ) )
5 3 4 mpbird
 |-  ( ph -> A <_ B )