Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrnmnfpnf.1 | |- ( ph -> A e. RR* ) |
|
xrnmnfpnf.2 | |- ( ph -> -. A e. RR ) |
||
xrnmnfpnf.3 | |- ( ph -> A =/= -oo ) |
||
Assertion | xrnmnfpnf | |- ( ph -> A = +oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnmnfpnf.1 | |- ( ph -> A e. RR* ) |
|
2 | xrnmnfpnf.2 | |- ( ph -> -. A e. RR ) |
|
3 | xrnmnfpnf.3 | |- ( ph -> A =/= -oo ) |
|
4 | 1 3 | jca | |- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
5 | xrnemnf | |- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |
|
6 | 4 5 | sylib | |- ( ph -> ( A e. RR \/ A = +oo ) ) |
7 | pm2.53 | |- ( ( A e. RR \/ A = +oo ) -> ( -. A e. RR -> A = +oo ) ) |
|
8 | 6 2 7 | sylc | |- ( ph -> A = +oo ) |