Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
2 |
1
|
adantl |
|- ( ( A = +oo /\ x e. RR ) -> x e. RR* ) |
3 |
|
id |
|- ( A = +oo -> A = +oo ) |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
4
|
a1i |
|- ( A = +oo -> +oo e. RR* ) |
6 |
3 5
|
eqeltrd |
|- ( A = +oo -> A e. RR* ) |
7 |
6
|
adantr |
|- ( ( A = +oo /\ x e. RR ) -> A e. RR* ) |
8 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
9 |
8
|
adantl |
|- ( ( A = +oo /\ x e. RR ) -> x < +oo ) |
10 |
|
simpl |
|- ( ( A = +oo /\ x e. RR ) -> A = +oo ) |
11 |
9 10
|
breqtrrd |
|- ( ( A = +oo /\ x e. RR ) -> x < A ) |
12 |
2 7 11
|
xrltled |
|- ( ( A = +oo /\ x e. RR ) -> x <_ A ) |
13 |
12
|
ralrimiva |
|- ( A = +oo -> A. x e. RR x <_ A ) |
14 |
13
|
adantl |
|- ( ( A e. RR* /\ A = +oo ) -> A. x e. RR x <_ A ) |
15 |
|
simpll |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A e. RR* ) |
16 |
|
0red |
|- ( A. x e. RR x <_ A -> 0 e. RR ) |
17 |
|
id |
|- ( A. x e. RR x <_ A -> A. x e. RR x <_ A ) |
18 |
|
breq1 |
|- ( x = 0 -> ( x <_ A <-> 0 <_ A ) ) |
19 |
18
|
rspcva |
|- ( ( 0 e. RR /\ A. x e. RR x <_ A ) -> 0 <_ A ) |
20 |
16 17 19
|
syl2anc |
|- ( A. x e. RR x <_ A -> 0 <_ A ) |
21 |
20
|
adantr |
|- ( ( A. x e. RR x <_ A /\ A = -oo ) -> 0 <_ A ) |
22 |
|
simpr |
|- ( ( A. x e. RR x <_ A /\ A = -oo ) -> A = -oo ) |
23 |
21 22
|
breqtrd |
|- ( ( A. x e. RR x <_ A /\ A = -oo ) -> 0 <_ -oo ) |
24 |
23
|
adantll |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A = -oo ) -> 0 <_ -oo ) |
25 |
|
mnflt0 |
|- -oo < 0 |
26 |
|
mnfxr |
|- -oo e. RR* |
27 |
|
0xr |
|- 0 e. RR* |
28 |
|
xrltnle |
|- ( ( -oo e. RR* /\ 0 e. RR* ) -> ( -oo < 0 <-> -. 0 <_ -oo ) ) |
29 |
26 27 28
|
mp2an |
|- ( -oo < 0 <-> -. 0 <_ -oo ) |
30 |
25 29
|
mpbi |
|- -. 0 <_ -oo |
31 |
30
|
a1i |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A = -oo ) -> -. 0 <_ -oo ) |
32 |
24 31
|
pm2.65da |
|- ( ( A e. RR* /\ A. x e. RR x <_ A ) -> -. A = -oo ) |
33 |
32
|
neqned |
|- ( ( A e. RR* /\ A. x e. RR x <_ A ) -> A =/= -oo ) |
34 |
33
|
adantr |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A =/= -oo ) |
35 |
|
simpl |
|- ( ( A e. RR* /\ A < +oo ) -> A e. RR* ) |
36 |
4
|
a1i |
|- ( ( A e. RR* /\ A < +oo ) -> +oo e. RR* ) |
37 |
|
simpr |
|- ( ( A e. RR* /\ A < +oo ) -> A < +oo ) |
38 |
35 36 37
|
xrltned |
|- ( ( A e. RR* /\ A < +oo ) -> A =/= +oo ) |
39 |
38
|
adantlr |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A =/= +oo ) |
40 |
15 34 39
|
xrred |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> A e. RR ) |
41 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
42 |
41
|
adantl |
|- ( ( A. x e. RR x <_ A /\ A e. RR ) -> ( A + 1 ) e. RR ) |
43 |
|
simpl |
|- ( ( A. x e. RR x <_ A /\ A e. RR ) -> A. x e. RR x <_ A ) |
44 |
|
breq1 |
|- ( x = ( A + 1 ) -> ( x <_ A <-> ( A + 1 ) <_ A ) ) |
45 |
44
|
rspcva |
|- ( ( ( A + 1 ) e. RR /\ A. x e. RR x <_ A ) -> ( A + 1 ) <_ A ) |
46 |
42 43 45
|
syl2anc |
|- ( ( A. x e. RR x <_ A /\ A e. RR ) -> ( A + 1 ) <_ A ) |
47 |
|
ltp1 |
|- ( A e. RR -> A < ( A + 1 ) ) |
48 |
|
id |
|- ( A e. RR -> A e. RR ) |
49 |
48 41
|
ltnled |
|- ( A e. RR -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) |
50 |
47 49
|
mpbid |
|- ( A e. RR -> -. ( A + 1 ) <_ A ) |
51 |
50
|
adantl |
|- ( ( A. x e. RR x <_ A /\ A e. RR ) -> -. ( A + 1 ) <_ A ) |
52 |
46 51
|
pm2.65da |
|- ( A. x e. RR x <_ A -> -. A e. RR ) |
53 |
52
|
ad2antlr |
|- ( ( ( A e. RR* /\ A. x e. RR x <_ A ) /\ A < +oo ) -> -. A e. RR ) |
54 |
40 53
|
pm2.65da |
|- ( ( A e. RR* /\ A. x e. RR x <_ A ) -> -. A < +oo ) |
55 |
|
nltpnft |
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
56 |
55
|
adantr |
|- ( ( A e. RR* /\ A. x e. RR x <_ A ) -> ( A = +oo <-> -. A < +oo ) ) |
57 |
54 56
|
mpbird |
|- ( ( A e. RR* /\ A. x e. RR x <_ A ) -> A = +oo ) |
58 |
14 57
|
impbida |
|- ( A e. RR* -> ( A = +oo <-> A. x e. RR x <_ A ) ) |