| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> -oo < A ) | 
						
							| 2 |  | ltpnf |  |-  ( B e. RR -> B < +oo ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. RR* /\ B e. RR ) -> B < +oo ) | 
						
							| 4 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 5 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 6 |  | xrlelttr |  |-  ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) | 
						
							| 7 | 5 6 | mp3an3 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) | 
						
							| 8 | 4 7 | sylan2 |  |-  ( ( A e. RR* /\ B e. RR ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) | 
						
							| 9 | 3 8 | mpan2d |  |-  ( ( A e. RR* /\ B e. RR ) -> ( A <_ B -> A < +oo ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A <_ B ) -> A < +oo ) | 
						
							| 11 | 10 | adantrl |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A < +oo ) | 
						
							| 12 |  | xrrebnd |  |-  ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) | 
						
							| 14 | 1 11 13 | mpbir2and |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |