Step |
Hyp |
Ref |
Expression |
1 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
2 |
1
|
adantr |
|- ( ( A e. RR* /\ B e. RR* ) -> -oo <_ A ) |
3 |
|
mnfxr |
|- -oo e. RR* |
4 |
|
xrlelttr |
|- ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( -oo <_ A /\ A < B ) -> -oo < B ) ) |
5 |
3 4
|
mp3an1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( -oo <_ A /\ A < B ) -> -oo < B ) ) |
6 |
2 5
|
mpand |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -oo < B ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> -oo < B ) ) |
8 |
|
pnfge |
|- ( C e. RR* -> C <_ +oo ) |
9 |
8
|
adantl |
|- ( ( B e. RR* /\ C e. RR* ) -> C <_ +oo ) |
10 |
|
pnfxr |
|- +oo e. RR* |
11 |
|
xrltletr |
|- ( ( B e. RR* /\ C e. RR* /\ +oo e. RR* ) -> ( ( B < C /\ C <_ +oo ) -> B < +oo ) ) |
12 |
10 11
|
mp3an3 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( ( B < C /\ C <_ +oo ) -> B < +oo ) ) |
13 |
9 12
|
mpan2d |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B < C -> B < +oo ) ) |
14 |
13
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B < C -> B < +oo ) ) |
15 |
7 14
|
anim12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> ( -oo < B /\ B < +oo ) ) ) |
16 |
|
xrrebnd |
|- ( B e. RR* -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
18 |
15 17
|
sylibrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> B e. RR ) ) |
19 |
18
|
imp |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR ) |