| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnflt |
|- ( B e. RR -> -oo < B ) |
| 2 |
1
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> -oo < B ) |
| 3 |
|
mnfxr |
|- -oo e. RR* |
| 4 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 5 |
4
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> B e. RR* ) |
| 6 |
|
simpl |
|- ( ( A e. RR* /\ B e. RR ) -> A e. RR* ) |
| 7 |
|
xrltletr |
|- ( ( -oo e. RR* /\ B e. RR* /\ A e. RR* ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
| 8 |
3 5 6 7
|
mp3an2i |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
| 9 |
2 8
|
mpand |
|- ( ( A e. RR* /\ B e. RR ) -> ( B <_ A -> -oo < A ) ) |
| 10 |
9
|
imp |
|- ( ( ( A e. RR* /\ B e. RR ) /\ B <_ A ) -> -oo < A ) |
| 11 |
10
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> -oo < A ) |
| 12 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A < +oo ) |
| 13 |
|
xrrebnd |
|- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 14 |
13
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 15 |
11 12 14
|
mpbir2and |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR ) |