Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrrege0 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0gtmnf | |- ( ( A e. RR* /\ 0 <_ A ) -> -oo < A ) |
|
| 2 | 1 | ad2ant2r | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> -oo < A ) |
| 3 | simprr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A <_ B ) |
|
| 4 | 2 3 | jca | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> ( -oo < A /\ A <_ B ) ) |
| 5 | xrre | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |
|
| 6 | 4 5 | syldan | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A e. RR ) |