Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xrrege0 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0gtmnf | |- ( ( A e. RR* /\ 0 <_ A ) -> -oo < A ) |
|
2 | 1 | ad2ant2r | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> -oo < A ) |
3 | simprr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A <_ B ) |
|
4 | 2 3 | jca | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> ( -oo < A /\ A <_ B ) ) |
5 | xrre | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |
|
6 | 4 5 | syldan | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( 0 <_ A /\ A <_ B ) ) -> A e. RR ) |