Metamath Proof Explorer


Theorem xrrest2

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses xrrest2.1
|- J = ( TopOpen ` CCfld )
xrrest2.2
|- X = ( ordTop ` <_ )
Assertion xrrest2
|- ( A C_ RR -> ( J |`t A ) = ( X |`t A ) )

Proof

Step Hyp Ref Expression
1 xrrest2.1
 |-  J = ( TopOpen ` CCfld )
2 xrrest2.2
 |-  X = ( ordTop ` <_ )
3 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
4 1 3 rerest
 |-  ( A C_ RR -> ( J |`t A ) = ( ( topGen ` ran (,) ) |`t A ) )
5 2 3 xrrest
 |-  ( A C_ RR -> ( X |`t A ) = ( ( topGen ` ran (,) ) |`t A ) )
6 4 5 eqtr4d
 |-  ( A C_ RR -> ( J |`t A ) = ( X |`t A ) )