Step |
Hyp |
Ref |
Expression |
1 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
2 |
1
|
a1i |
|- ( T. -> RR* = ( Base ` RR*s ) ) |
3 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
4 |
3
|
a1i |
|- ( T. -> +e = ( +g ` RR*s ) ) |
5 |
|
0xr |
|- 0 e. RR* |
6 |
5
|
a1i |
|- ( T. -> 0 e. RR* ) |
7 |
|
xaddid2 |
|- ( x e. RR* -> ( 0 +e x ) = x ) |
8 |
7
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( 0 +e x ) = x ) |
9 |
|
xaddid1 |
|- ( x e. RR* -> ( x +e 0 ) = x ) |
10 |
9
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( x +e 0 ) = x ) |
11 |
2 4 6 8 10
|
grpidd |
|- ( T. -> 0 = ( 0g ` RR*s ) ) |
12 |
11
|
mptru |
|- 0 = ( 0g ` RR*s ) |