Metamath Proof Explorer


Theorem xrs10

Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1
|- R = ( RR*s |`s ( RR* \ { -oo } ) )
Assertion xrs10
|- 0 = ( 0g ` R )

Proof

Step Hyp Ref Expression
1 xrs1mnd.1
 |-  R = ( RR*s |`s ( RR* \ { -oo } ) )
2 difss
 |-  ( RR* \ { -oo } ) C_ RR*
3 xrsbas
 |-  RR* = ( Base ` RR*s )
4 1 3 ressbas2
 |-  ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) )
5 2 4 ax-mp
 |-  ( RR* \ { -oo } ) = ( Base ` R )
6 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
7 xrex
 |-  RR* e. _V
8 7 difexi
 |-  ( RR* \ { -oo } ) e. _V
9 xrsadd
 |-  +e = ( +g ` RR*s )
10 1 9 ressplusg
 |-  ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) )
11 8 10 ax-mp
 |-  +e = ( +g ` R )
12 0re
 |-  0 e. RR
13 rexr
 |-  ( 0 e. RR -> 0 e. RR* )
14 renemnf
 |-  ( 0 e. RR -> 0 =/= -oo )
15 eldifsn
 |-  ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) )
16 13 14 15 sylanbrc
 |-  ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) )
17 12 16 mp1i
 |-  ( T. -> 0 e. ( RR* \ { -oo } ) )
18 eldifi
 |-  ( x e. ( RR* \ { -oo } ) -> x e. RR* )
19 18 adantl
 |-  ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> x e. RR* )
20 xaddid2
 |-  ( x e. RR* -> ( 0 +e x ) = x )
21 19 20 syl
 |-  ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( 0 +e x ) = x )
22 19 xaddid1d
 |-  ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( x +e 0 ) = x )
23 5 6 11 17 21 22 ismgmid2
 |-  ( T. -> 0 = ( 0g ` R ) )
24 23 mptru
 |-  0 = ( 0g ` R )