| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrs1mnd.1 |
|- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
| 2 |
1
|
xrs1mnd |
|- R e. Mnd |
| 3 |
|
eldifi |
|- ( x e. ( RR* \ { -oo } ) -> x e. RR* ) |
| 4 |
|
eldifi |
|- ( y e. ( RR* \ { -oo } ) -> y e. RR* ) |
| 5 |
|
xaddcom |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) = ( y +e x ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) = ( y +e x ) ) |
| 7 |
6
|
rgen2 |
|- A. x e. ( RR* \ { -oo } ) A. y e. ( RR* \ { -oo } ) ( x +e y ) = ( y +e x ) |
| 8 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
| 9 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 10 |
1 9
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 11 |
8 10
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` R ) |
| 12 |
|
xrex |
|- RR* e. _V |
| 13 |
12
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
| 14 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 15 |
1 14
|
ressplusg |
|- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 16 |
13 15
|
ax-mp |
|- +e = ( +g ` R ) |
| 17 |
11 16
|
iscmn |
|- ( R e. CMnd <-> ( R e. Mnd /\ A. x e. ( RR* \ { -oo } ) A. y e. ( RR* \ { -oo } ) ( x +e y ) = ( y +e x ) ) ) |
| 18 |
2 7 17
|
mpbir2an |
|- R e. CMnd |