Step |
Hyp |
Ref |
Expression |
1 |
|
xrs1mnd.1 |
|- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
2 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
3 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
4 |
1 3
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
5 |
2 4
|
mp1i |
|- ( T. -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
6 |
|
xrex |
|- RR* e. _V |
7 |
6
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
8 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
9 |
1 8
|
ressplusg |
|- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
10 |
7 9
|
mp1i |
|- ( T. -> +e = ( +g ` R ) ) |
11 |
|
eldifsn |
|- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
12 |
|
eldifsn |
|- ( y e. ( RR* \ { -oo } ) <-> ( y e. RR* /\ y =/= -oo ) ) |
13 |
|
xaddcl |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) e. RR* ) |
14 |
13
|
ad2ant2r |
|- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) e. RR* ) |
15 |
|
xaddnemnf |
|- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) =/= -oo ) |
16 |
|
eldifsn |
|- ( ( x +e y ) e. ( RR* \ { -oo } ) <-> ( ( x +e y ) e. RR* /\ ( x +e y ) =/= -oo ) ) |
17 |
14 15 16
|
sylanbrc |
|- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
18 |
11 12 17
|
syl2anb |
|- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
19 |
18
|
3adant1 |
|- ( ( T. /\ x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
20 |
|
eldifsn |
|- ( z e. ( RR* \ { -oo } ) <-> ( z e. RR* /\ z =/= -oo ) ) |
21 |
|
xaddass |
|- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) /\ ( z e. RR* /\ z =/= -oo ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
22 |
11 12 20 21
|
syl3anb |
|- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) /\ z e. ( RR* \ { -oo } ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
23 |
22
|
adantl |
|- ( ( T. /\ ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) /\ z e. ( RR* \ { -oo } ) ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
24 |
|
0re |
|- 0 e. RR |
25 |
|
rexr |
|- ( 0 e. RR -> 0 e. RR* ) |
26 |
|
renemnf |
|- ( 0 e. RR -> 0 =/= -oo ) |
27 |
|
eldifsn |
|- ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) |
28 |
25 26 27
|
sylanbrc |
|- ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) |
29 |
24 28
|
mp1i |
|- ( T. -> 0 e. ( RR* \ { -oo } ) ) |
30 |
|
eldifi |
|- ( x e. ( RR* \ { -oo } ) -> x e. RR* ) |
31 |
30
|
adantl |
|- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> x e. RR* ) |
32 |
|
xaddid2 |
|- ( x e. RR* -> ( 0 +e x ) = x ) |
33 |
31 32
|
syl |
|- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( 0 +e x ) = x ) |
34 |
31
|
xaddid1d |
|- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( x +e 0 ) = x ) |
35 |
5 10 19 23 29 33 34
|
ismndd |
|- ( T. -> R e. Mnd ) |
36 |
35
|
mptru |
|- R e. Mnd |